Step |
Hyp |
Ref |
Expression |
1 |
|
alephfplem.1 |
⊢ 𝐻 = ( rec ( ℵ , ω ) ↾ ω ) |
2 |
1
|
alephfplem4 |
⊢ ∪ ( 𝐻 “ ω ) ∈ ran ℵ |
3 |
|
isinfcard |
⊢ ( ( ω ⊆ ∪ ( 𝐻 “ ω ) ∧ ( card ‘ ∪ ( 𝐻 “ ω ) ) = ∪ ( 𝐻 “ ω ) ) ↔ ∪ ( 𝐻 “ ω ) ∈ ran ℵ ) |
4 |
|
cardalephex |
⊢ ( ω ⊆ ∪ ( 𝐻 “ ω ) → ( ( card ‘ ∪ ( 𝐻 “ ω ) ) = ∪ ( 𝐻 “ ω ) ↔ ∃ 𝑧 ∈ On ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) ) |
5 |
4
|
biimpa |
⊢ ( ( ω ⊆ ∪ ( 𝐻 “ ω ) ∧ ( card ‘ ∪ ( 𝐻 “ ω ) ) = ∪ ( 𝐻 “ ω ) ) → ∃ 𝑧 ∈ On ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) |
6 |
3 5
|
sylbir |
⊢ ( ∪ ( 𝐻 “ ω ) ∈ ran ℵ → ∃ 𝑧 ∈ On ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) |
7 |
|
alephle |
⊢ ( 𝑧 ∈ On → 𝑧 ⊆ ( ℵ ‘ 𝑧 ) ) |
8 |
|
alephon |
⊢ ( ℵ ‘ 𝑧 ) ∈ On |
9 |
8
|
onirri |
⊢ ¬ ( ℵ ‘ 𝑧 ) ∈ ( ℵ ‘ 𝑧 ) |
10 |
|
frfnom |
⊢ ( rec ( ℵ , ω ) ↾ ω ) Fn ω |
11 |
1
|
fneq1i |
⊢ ( 𝐻 Fn ω ↔ ( rec ( ℵ , ω ) ↾ ω ) Fn ω ) |
12 |
10 11
|
mpbir |
⊢ 𝐻 Fn ω |
13 |
|
fnfun |
⊢ ( 𝐻 Fn ω → Fun 𝐻 ) |
14 |
|
eluniima |
⊢ ( Fun 𝐻 → ( 𝑧 ∈ ∪ ( 𝐻 “ ω ) ↔ ∃ 𝑣 ∈ ω 𝑧 ∈ ( 𝐻 ‘ 𝑣 ) ) ) |
15 |
12 13 14
|
mp2b |
⊢ ( 𝑧 ∈ ∪ ( 𝐻 “ ω ) ↔ ∃ 𝑣 ∈ ω 𝑧 ∈ ( 𝐻 ‘ 𝑣 ) ) |
16 |
|
alephsson |
⊢ ran ℵ ⊆ On |
17 |
1
|
alephfplem3 |
⊢ ( 𝑣 ∈ ω → ( 𝐻 ‘ 𝑣 ) ∈ ran ℵ ) |
18 |
16 17
|
sselid |
⊢ ( 𝑣 ∈ ω → ( 𝐻 ‘ 𝑣 ) ∈ On ) |
19 |
|
alephord2i |
⊢ ( ( 𝐻 ‘ 𝑣 ) ∈ On → ( 𝑧 ∈ ( 𝐻 ‘ 𝑣 ) → ( ℵ ‘ 𝑧 ) ∈ ( ℵ ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝑣 ∈ ω → ( 𝑧 ∈ ( 𝐻 ‘ 𝑣 ) → ( ℵ ‘ 𝑧 ) ∈ ( ℵ ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) |
21 |
1
|
alephfplem2 |
⊢ ( 𝑣 ∈ ω → ( 𝐻 ‘ suc 𝑣 ) = ( ℵ ‘ ( 𝐻 ‘ 𝑣 ) ) ) |
22 |
|
peano2 |
⊢ ( 𝑣 ∈ ω → suc 𝑣 ∈ ω ) |
23 |
|
fnfvelrn |
⊢ ( ( 𝐻 Fn ω ∧ suc 𝑣 ∈ ω ) → ( 𝐻 ‘ suc 𝑣 ) ∈ ran 𝐻 ) |
24 |
12 23
|
mpan |
⊢ ( suc 𝑣 ∈ ω → ( 𝐻 ‘ suc 𝑣 ) ∈ ran 𝐻 ) |
25 |
|
fnima |
⊢ ( 𝐻 Fn ω → ( 𝐻 “ ω ) = ran 𝐻 ) |
26 |
12 25
|
ax-mp |
⊢ ( 𝐻 “ ω ) = ran 𝐻 |
27 |
24 26
|
eleqtrrdi |
⊢ ( suc 𝑣 ∈ ω → ( 𝐻 ‘ suc 𝑣 ) ∈ ( 𝐻 “ ω ) ) |
28 |
22 27
|
syl |
⊢ ( 𝑣 ∈ ω → ( 𝐻 ‘ suc 𝑣 ) ∈ ( 𝐻 “ ω ) ) |
29 |
21 28
|
eqeltrrd |
⊢ ( 𝑣 ∈ ω → ( ℵ ‘ ( 𝐻 ‘ 𝑣 ) ) ∈ ( 𝐻 “ ω ) ) |
30 |
|
elssuni |
⊢ ( ( ℵ ‘ ( 𝐻 ‘ 𝑣 ) ) ∈ ( 𝐻 “ ω ) → ( ℵ ‘ ( 𝐻 ‘ 𝑣 ) ) ⊆ ∪ ( 𝐻 “ ω ) ) |
31 |
29 30
|
syl |
⊢ ( 𝑣 ∈ ω → ( ℵ ‘ ( 𝐻 ‘ 𝑣 ) ) ⊆ ∪ ( 𝐻 “ ω ) ) |
32 |
31
|
sseld |
⊢ ( 𝑣 ∈ ω → ( ( ℵ ‘ 𝑧 ) ∈ ( ℵ ‘ ( 𝐻 ‘ 𝑣 ) ) → ( ℵ ‘ 𝑧 ) ∈ ∪ ( 𝐻 “ ω ) ) ) |
33 |
20 32
|
syld |
⊢ ( 𝑣 ∈ ω → ( 𝑧 ∈ ( 𝐻 ‘ 𝑣 ) → ( ℵ ‘ 𝑧 ) ∈ ∪ ( 𝐻 “ ω ) ) ) |
34 |
33
|
rexlimiv |
⊢ ( ∃ 𝑣 ∈ ω 𝑧 ∈ ( 𝐻 ‘ 𝑣 ) → ( ℵ ‘ 𝑧 ) ∈ ∪ ( 𝐻 “ ω ) ) |
35 |
15 34
|
sylbi |
⊢ ( 𝑧 ∈ ∪ ( 𝐻 “ ω ) → ( ℵ ‘ 𝑧 ) ∈ ∪ ( 𝐻 “ ω ) ) |
36 |
|
eleq2 |
⊢ ( ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) → ( 𝑧 ∈ ∪ ( 𝐻 “ ω ) ↔ 𝑧 ∈ ( ℵ ‘ 𝑧 ) ) ) |
37 |
|
eleq2 |
⊢ ( ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) → ( ( ℵ ‘ 𝑧 ) ∈ ∪ ( 𝐻 “ ω ) ↔ ( ℵ ‘ 𝑧 ) ∈ ( ℵ ‘ 𝑧 ) ) ) |
38 |
36 37
|
imbi12d |
⊢ ( ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) → ( ( 𝑧 ∈ ∪ ( 𝐻 “ ω ) → ( ℵ ‘ 𝑧 ) ∈ ∪ ( 𝐻 “ ω ) ) ↔ ( 𝑧 ∈ ( ℵ ‘ 𝑧 ) → ( ℵ ‘ 𝑧 ) ∈ ( ℵ ‘ 𝑧 ) ) ) ) |
39 |
35 38
|
mpbii |
⊢ ( ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) → ( 𝑧 ∈ ( ℵ ‘ 𝑧 ) → ( ℵ ‘ 𝑧 ) ∈ ( ℵ ‘ 𝑧 ) ) ) |
40 |
9 39
|
mtoi |
⊢ ( ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) → ¬ 𝑧 ∈ ( ℵ ‘ 𝑧 ) ) |
41 |
7 40
|
anim12i |
⊢ ( ( 𝑧 ∈ On ∧ ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) → ( 𝑧 ⊆ ( ℵ ‘ 𝑧 ) ∧ ¬ 𝑧 ∈ ( ℵ ‘ 𝑧 ) ) ) |
42 |
|
eloni |
⊢ ( 𝑧 ∈ On → Ord 𝑧 ) |
43 |
8
|
onordi |
⊢ Ord ( ℵ ‘ 𝑧 ) |
44 |
|
ordtri4 |
⊢ ( ( Ord 𝑧 ∧ Ord ( ℵ ‘ 𝑧 ) ) → ( 𝑧 = ( ℵ ‘ 𝑧 ) ↔ ( 𝑧 ⊆ ( ℵ ‘ 𝑧 ) ∧ ¬ 𝑧 ∈ ( ℵ ‘ 𝑧 ) ) ) ) |
45 |
42 43 44
|
sylancl |
⊢ ( 𝑧 ∈ On → ( 𝑧 = ( ℵ ‘ 𝑧 ) ↔ ( 𝑧 ⊆ ( ℵ ‘ 𝑧 ) ∧ ¬ 𝑧 ∈ ( ℵ ‘ 𝑧 ) ) ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝑧 ∈ On ∧ ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) → ( 𝑧 = ( ℵ ‘ 𝑧 ) ↔ ( 𝑧 ⊆ ( ℵ ‘ 𝑧 ) ∧ ¬ 𝑧 ∈ ( ℵ ‘ 𝑧 ) ) ) ) |
47 |
41 46
|
mpbird |
⊢ ( ( 𝑧 ∈ On ∧ ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) → 𝑧 = ( ℵ ‘ 𝑧 ) ) |
48 |
|
eqeq2 |
⊢ ( ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) → ( 𝑧 = ∪ ( 𝐻 “ ω ) ↔ 𝑧 = ( ℵ ‘ 𝑧 ) ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝑧 ∈ On ∧ ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) → ( 𝑧 = ∪ ( 𝐻 “ ω ) ↔ 𝑧 = ( ℵ ‘ 𝑧 ) ) ) |
50 |
47 49
|
mpbird |
⊢ ( ( 𝑧 ∈ On ∧ ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) → 𝑧 = ∪ ( 𝐻 “ ω ) ) |
51 |
50
|
eqcomd |
⊢ ( ( 𝑧 ∈ On ∧ ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) → ∪ ( 𝐻 “ ω ) = 𝑧 ) |
52 |
51
|
fveq2d |
⊢ ( ( 𝑧 ∈ On ∧ ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) → ( ℵ ‘ ∪ ( 𝐻 “ ω ) ) = ( ℵ ‘ 𝑧 ) ) |
53 |
|
eqeq2 |
⊢ ( ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) → ( ( ℵ ‘ ∪ ( 𝐻 “ ω ) ) = ∪ ( 𝐻 “ ω ) ↔ ( ℵ ‘ ∪ ( 𝐻 “ ω ) ) = ( ℵ ‘ 𝑧 ) ) ) |
54 |
53
|
adantl |
⊢ ( ( 𝑧 ∈ On ∧ ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) → ( ( ℵ ‘ ∪ ( 𝐻 “ ω ) ) = ∪ ( 𝐻 “ ω ) ↔ ( ℵ ‘ ∪ ( 𝐻 “ ω ) ) = ( ℵ ‘ 𝑧 ) ) ) |
55 |
52 54
|
mpbird |
⊢ ( ( 𝑧 ∈ On ∧ ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) ) → ( ℵ ‘ ∪ ( 𝐻 “ ω ) ) = ∪ ( 𝐻 “ ω ) ) |
56 |
55
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ On ∪ ( 𝐻 “ ω ) = ( ℵ ‘ 𝑧 ) → ( ℵ ‘ ∪ ( 𝐻 “ ω ) ) = ∪ ( 𝐻 “ ω ) ) |
57 |
2 6 56
|
mp2b |
⊢ ( ℵ ‘ ∪ ( 𝐻 “ ω ) ) = ∪ ( 𝐻 “ ω ) |