| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aspval2.a |
⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) |
| 2 |
|
aspval2.c |
⊢ 𝐶 = ( algSc ‘ 𝑊 ) |
| 3 |
|
aspval2.r |
⊢ 𝑅 = ( mrCls ‘ ( SubRing ‘ 𝑊 ) ) |
| 4 |
|
aspval2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 5 |
|
elin |
⊢ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ) |
| 6 |
5
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ) |
| 7 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ) ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 10 |
2 9
|
issubassa2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ↔ ran 𝐶 ⊆ 𝑥 ) ) |
| 11 |
10
|
anbi1d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥 ) ) ) |
| 12 |
|
unss |
⊢ ( ( ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) |
| 13 |
11 12
|
bitrdi |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) ) |
| 14 |
13
|
pm5.32da |
⊢ ( 𝑊 ∈ AssAlg → ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) ) ) |
| 15 |
8 14
|
bitrid |
⊢ ( 𝑊 ∈ AssAlg → ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) ) ) |
| 16 |
15
|
abbidv |
⊢ ( 𝑊 ∈ AssAlg → { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) } ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) } ) |
| 18 |
|
df-rab |
⊢ { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) } |
| 19 |
|
df-rab |
⊢ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) } |
| 20 |
17 18 19
|
3eqtr4g |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } = { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
| 21 |
20
|
inteqd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } = ∩ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
| 22 |
1 4 9
|
aspval |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 23 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
| 24 |
4
|
subrgmre |
⊢ ( 𝑊 ∈ Ring → ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ) |
| 25 |
23 24
|
syl |
⊢ ( 𝑊 ∈ AssAlg → ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ) |
| 26 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 27 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
| 28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 29 |
2 26 23 27 28 4
|
asclf |
⊢ ( 𝑊 ∈ AssAlg → 𝐶 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ 𝑉 ) |
| 30 |
29
|
frnd |
⊢ ( 𝑊 ∈ AssAlg → ran 𝐶 ⊆ 𝑉 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ran 𝐶 ⊆ 𝑉 ) |
| 32 |
|
simpr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) |
| 33 |
31 32
|
unssd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑉 ) |
| 34 |
3
|
mrcval |
⊢ ( ( ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑉 ) → ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) = ∩ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
| 35 |
25 33 34
|
syl2an2r |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) = ∩ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
| 36 |
21 22 35
|
3eqtr4d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) ) |