| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvp |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 2 |
|
atelch |
⊢ ( 𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) |
| 3 |
|
cvexch |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 4 |
|
cvmd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ) → 𝐴 𝑀ℋ 𝐵 ) |
| 5 |
4
|
3expia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵 ) ) |
| 6 |
3 5
|
sylbird |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ 𝐵 ) ) |
| 7 |
2 6
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ 𝐵 ) ) |
| 8 |
1 7
|
sylbid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → 𝐴 𝑀ℋ 𝐵 ) ) |
| 9 |
|
atnssm0 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
| 10 |
9
|
con1bid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐵 ⊆ 𝐴 ) ) |
| 11 |
|
ssmd2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 𝑀ℋ 𝐵 ) |
| 12 |
11
|
3com12 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 𝑀ℋ 𝐵 ) |
| 13 |
2 12
|
syl3an2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 𝑀ℋ 𝐵 ) |
| 14 |
13
|
3expia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐵 ⊆ 𝐴 → 𝐴 𝑀ℋ 𝐵 ) ) |
| 15 |
10 14
|
sylbid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ ( 𝐴 ∩ 𝐵 ) = 0ℋ → 𝐴 𝑀ℋ 𝐵 ) ) |
| 16 |
8 15
|
pm2.61d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → 𝐴 𝑀ℋ 𝐵 ) |