| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1366.1 |
⊢ ( 𝜓 ↔ ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ∧ 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ) ) |
| 2 |
1
|
simp3bi |
⊢ ( 𝜓 → 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ) |
| 3 |
1
|
simp2bi |
⊢ ( 𝜓 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 5 |
|
nfeu1 |
⊢ Ⅎ 𝑦 ∃! 𝑦 𝜑 |
| 6 |
4 5
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 |
| 7 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 |
| 8 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 𝜑 ) |
| 9 |
|
iota1 |
⊢ ( ∃! 𝑦 𝜑 → ( 𝜑 ↔ ( ℩ 𝑦 𝜑 ) = 𝑦 ) ) |
| 10 |
|
eqcom |
⊢ ( ( ℩ 𝑦 𝜑 ) = 𝑦 ↔ 𝑦 = ( ℩ 𝑦 𝜑 ) ) |
| 11 |
9 10
|
bitrdi |
⊢ ( ∃! 𝑦 𝜑 → ( 𝜑 ↔ 𝑦 = ( ℩ 𝑦 𝜑 ) ) ) |
| 12 |
8 11
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 ↔ 𝑦 = ( ℩ 𝑦 𝜑 ) ) ) |
| 13 |
7 12
|
rexbida |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( ℩ 𝑦 𝜑 ) ) ) |
| 14 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 15 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) |
| 16 |
|
iotaex |
⊢ ( ℩ 𝑦 𝜑 ) ∈ V |
| 17 |
15 16
|
elrnmpti |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( ℩ 𝑦 𝜑 ) ) |
| 18 |
13 14 17
|
3bitr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 → ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) ) |
| 19 |
6 18
|
alrimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 → ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) ) |
| 20 |
3 19
|
syl |
⊢ ( 𝜓 → ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) ) |
| 21 |
|
nfab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } |
| 22 |
|
nfiota1 |
⊢ Ⅎ 𝑦 ( ℩ 𝑦 𝜑 ) |
| 23 |
4 22
|
nfmpt |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) |
| 24 |
23
|
nfrn |
⊢ Ⅎ 𝑦 ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) |
| 25 |
21 24
|
cleqf |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) ) |
| 26 |
20 25
|
sylibr |
⊢ ( 𝜓 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) |
| 27 |
2 26
|
eqtrd |
⊢ ( 𝜓 → 𝐵 = ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) |
| 28 |
1
|
simp1bi |
⊢ ( 𝜓 → 𝐴 ∈ V ) |
| 29 |
|
mptexg |
⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ∈ V ) |
| 30 |
|
rnexg |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ∈ V → ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ∈ V ) |
| 31 |
28 29 30
|
3syl |
⊢ ( 𝜓 → ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ∈ V ) |
| 32 |
27 31
|
eqeltrd |
⊢ ( 𝜓 → 𝐵 ∈ V ) |