| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1379.1 |
⊢ ( 𝜑 ↔ ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
| 2 |
|
bnj1379.2 |
⊢ 𝐷 = ( dom 𝑓 ∩ dom 𝑔 ) |
| 3 |
|
bnj1379.3 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) ) |
| 4 |
|
bnj1379.5 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) ) |
| 5 |
|
bnj1379.6 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑓 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) ) |
| 6 |
|
bnj1379.7 |
⊢ ( 𝜏 ↔ ( 𝜃 ∧ 𝑔 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) ) |
| 7 |
1
|
bnj1095 |
⊢ ( 𝜑 → ∀ 𝑓 𝜑 ) |
| 8 |
7
|
nf5i |
⊢ Ⅎ 𝑓 𝜑 |
| 9 |
|
nfra1 |
⊢ Ⅎ 𝑓 ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) |
| 10 |
8 9
|
nfan |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
| 11 |
3 10
|
nfxfr |
⊢ Ⅎ 𝑓 𝜓 |
| 12 |
1
|
bnj946 |
⊢ ( 𝜑 ↔ ∀ 𝑓 ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ) |
| 13 |
12
|
biimpi |
⊢ ( 𝜑 → ∀ 𝑓 ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ) |
| 14 |
13
|
19.21bi |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ) |
| 15 |
3 14
|
bnj832 |
⊢ ( 𝜓 → ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ) |
| 16 |
|
funrel |
⊢ ( Fun 𝑓 → Rel 𝑓 ) |
| 17 |
15 16
|
syl6 |
⊢ ( 𝜓 → ( 𝑓 ∈ 𝐴 → Rel 𝑓 ) ) |
| 18 |
11 17
|
ralrimi |
⊢ ( 𝜓 → ∀ 𝑓 ∈ 𝐴 Rel 𝑓 ) |
| 19 |
|
reluni |
⊢ ( Rel ∪ 𝐴 ↔ ∀ 𝑓 ∈ 𝐴 Rel 𝑓 ) |
| 20 |
18 19
|
sylibr |
⊢ ( 𝜓 → Rel ∪ 𝐴 ) |
| 21 |
|
eluni2 |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑓 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
| 22 |
21
|
biimpi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 → ∃ 𝑓 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
| 23 |
22
|
bnj1196 |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 → ∃ 𝑓 ( 𝑓 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) ) |
| 24 |
4 23
|
bnj836 |
⊢ ( 𝜒 → ∃ 𝑓 ( 𝑓 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) ) |
| 25 |
|
nfv |
⊢ Ⅎ 𝑓 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 |
| 26 |
|
nfv |
⊢ Ⅎ 𝑓 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 |
| 27 |
11 25 26
|
nf3an |
⊢ Ⅎ 𝑓 ( 𝜓 ∧ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) |
| 28 |
4 27
|
nfxfr |
⊢ Ⅎ 𝑓 𝜒 |
| 29 |
28
|
nf5ri |
⊢ ( 𝜒 → ∀ 𝑓 𝜒 ) |
| 30 |
24 5 29
|
bnj1345 |
⊢ ( 𝜒 → ∃ 𝑓 𝜃 ) |
| 31 |
4
|
simp3bi |
⊢ ( 𝜒 → 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) |
| 32 |
5 31
|
bnj835 |
⊢ ( 𝜃 → 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) |
| 33 |
|
eluni2 |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑔 ∈ 𝐴 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) |
| 34 |
33
|
biimpi |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 → ∃ 𝑔 ∈ 𝐴 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) |
| 35 |
34
|
bnj1196 |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 → ∃ 𝑔 ( 𝑔 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) ) |
| 36 |
32 35
|
syl |
⊢ ( 𝜃 → ∃ 𝑔 ( 𝑔 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) ) |
| 37 |
|
nfv |
⊢ Ⅎ 𝑔 𝜑 |
| 38 |
|
nfra2w |
⊢ Ⅎ 𝑔 ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) |
| 39 |
37 38
|
nfan |
⊢ Ⅎ 𝑔 ( 𝜑 ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
| 40 |
3 39
|
nfxfr |
⊢ Ⅎ 𝑔 𝜓 |
| 41 |
|
nfv |
⊢ Ⅎ 𝑔 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 |
| 42 |
|
nfv |
⊢ Ⅎ 𝑔 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 |
| 43 |
40 41 42
|
nf3an |
⊢ Ⅎ 𝑔 ( 𝜓 ∧ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) |
| 44 |
4 43
|
nfxfr |
⊢ Ⅎ 𝑔 𝜒 |
| 45 |
|
nfv |
⊢ Ⅎ 𝑔 𝑓 ∈ 𝐴 |
| 46 |
|
nfv |
⊢ Ⅎ 𝑔 〈 𝑥 , 𝑦 〉 ∈ 𝑓 |
| 47 |
44 45 46
|
nf3an |
⊢ Ⅎ 𝑔 ( 𝜒 ∧ 𝑓 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
| 48 |
5 47
|
nfxfr |
⊢ Ⅎ 𝑔 𝜃 |
| 49 |
48
|
nf5ri |
⊢ ( 𝜃 → ∀ 𝑔 𝜃 ) |
| 50 |
36 6 49
|
bnj1345 |
⊢ ( 𝜃 → ∃ 𝑔 𝜏 ) |
| 51 |
3
|
simprbi |
⊢ ( 𝜓 → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
| 52 |
4 51
|
bnj835 |
⊢ ( 𝜒 → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
| 53 |
5 52
|
bnj835 |
⊢ ( 𝜃 → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
| 54 |
6 53
|
bnj835 |
⊢ ( 𝜏 → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
| 55 |
5 6
|
bnj1219 |
⊢ ( 𝜏 → 𝑓 ∈ 𝐴 ) |
| 56 |
54 55
|
bnj1294 |
⊢ ( 𝜏 → ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
| 57 |
6
|
simp2bi |
⊢ ( 𝜏 → 𝑔 ∈ 𝐴 ) |
| 58 |
56 57
|
bnj1294 |
⊢ ( 𝜏 → ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
| 59 |
58
|
fveq1d |
⊢ ( 𝜏 → ( ( 𝑓 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) ) |
| 60 |
5
|
simp3bi |
⊢ ( 𝜃 → 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
| 61 |
6 60
|
bnj835 |
⊢ ( 𝜏 → 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
| 62 |
|
vex |
⊢ 𝑥 ∈ V |
| 63 |
|
vex |
⊢ 𝑦 ∈ V |
| 64 |
62 63
|
opeldm |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑓 → 𝑥 ∈ dom 𝑓 ) |
| 65 |
61 64
|
syl |
⊢ ( 𝜏 → 𝑥 ∈ dom 𝑓 ) |
| 66 |
|
vex |
⊢ 𝑧 ∈ V |
| 67 |
62 66
|
opeldm |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑔 → 𝑥 ∈ dom 𝑔 ) |
| 68 |
6 67
|
bnj837 |
⊢ ( 𝜏 → 𝑥 ∈ dom 𝑔 ) |
| 69 |
65 68
|
elind |
⊢ ( 𝜏 → 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ) |
| 70 |
69 2
|
eleqtrrdi |
⊢ ( 𝜏 → 𝑥 ∈ 𝐷 ) |
| 71 |
70
|
fvresd |
⊢ ( 𝜏 → ( ( 𝑓 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 72 |
70
|
fvresd |
⊢ ( 𝜏 → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 73 |
59 71 72
|
3eqtr3d |
⊢ ( 𝜏 → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 74 |
1
|
biimpi |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
| 75 |
3 74
|
bnj832 |
⊢ ( 𝜓 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
| 76 |
4 75
|
bnj835 |
⊢ ( 𝜒 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
| 77 |
5 76
|
bnj835 |
⊢ ( 𝜃 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
| 78 |
6 77
|
bnj835 |
⊢ ( 𝜏 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
| 79 |
78 55
|
bnj1294 |
⊢ ( 𝜏 → Fun 𝑓 ) |
| 80 |
|
funopfv |
⊢ ( Fun 𝑓 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑓 → ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) |
| 81 |
79 61 80
|
sylc |
⊢ ( 𝜏 → ( 𝑓 ‘ 𝑥 ) = 𝑦 ) |
| 82 |
|
funeq |
⊢ ( 𝑓 = 𝑔 → ( Fun 𝑓 ↔ Fun 𝑔 ) ) |
| 83 |
82 78 57
|
rspcdva |
⊢ ( 𝜏 → Fun 𝑔 ) |
| 84 |
6
|
simp3bi |
⊢ ( 𝜏 → 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) |
| 85 |
|
funopfv |
⊢ ( Fun 𝑔 → ( 〈 𝑥 , 𝑧 〉 ∈ 𝑔 → ( 𝑔 ‘ 𝑥 ) = 𝑧 ) ) |
| 86 |
83 84 85
|
sylc |
⊢ ( 𝜏 → ( 𝑔 ‘ 𝑥 ) = 𝑧 ) |
| 87 |
73 81 86
|
3eqtr3d |
⊢ ( 𝜏 → 𝑦 = 𝑧 ) |
| 88 |
50 87
|
bnj593 |
⊢ ( 𝜃 → ∃ 𝑔 𝑦 = 𝑧 ) |
| 89 |
88
|
bnj937 |
⊢ ( 𝜃 → 𝑦 = 𝑧 ) |
| 90 |
30 89
|
bnj593 |
⊢ ( 𝜒 → ∃ 𝑓 𝑦 = 𝑧 ) |
| 91 |
90
|
bnj937 |
⊢ ( 𝜒 → 𝑦 = 𝑧 ) |
| 92 |
4 91
|
sylbir |
⊢ ( ( 𝜓 ∧ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) |
| 93 |
92
|
3expib |
⊢ ( 𝜓 → ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 94 |
93
|
alrimivv |
⊢ ( 𝜓 → ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 95 |
94
|
alrimiv |
⊢ ( 𝜓 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 96 |
|
dffun4 |
⊢ ( Fun ∪ 𝐴 ↔ ( Rel ∪ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) ) |
| 97 |
20 95 96
|
sylanbrc |
⊢ ( 𝜓 → Fun ∪ 𝐴 ) |