Step |
Hyp |
Ref |
Expression |
1 |
|
bnj149.1 |
⊢ ( 𝜃1 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
2 |
|
bnj149.2 |
⊢ ( 𝜁0 ↔ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) |
3 |
|
bnj149.3 |
⊢ ( 𝜁1 ↔ [ 𝑔 / 𝑓 ] 𝜁0 ) |
4 |
|
bnj149.4 |
⊢ ( 𝜑1 ↔ [ 𝑔 / 𝑓 ] 𝜑′ ) |
5 |
|
bnj149.5 |
⊢ ( 𝜓1 ↔ [ 𝑔 / 𝑓 ] 𝜓′ ) |
6 |
|
bnj149.6 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
7 |
|
simpr1 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → 𝑓 Fn 1o ) |
8 |
|
df1o2 |
⊢ 1o = { ∅ } |
9 |
8
|
fneq2i |
⊢ ( 𝑓 Fn 1o ↔ 𝑓 Fn { ∅ } ) |
10 |
7 9
|
sylib |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → 𝑓 Fn { ∅ } ) |
11 |
|
simpr2 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → 𝜑′ ) |
12 |
11 6
|
sylib |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
13 |
|
fvex |
⊢ ( 𝑓 ‘ ∅ ) ∈ V |
14 |
13
|
elsn |
⊢ ( ( 𝑓 ‘ ∅ ) ∈ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
15 |
12 14
|
sylibr |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → ( 𝑓 ‘ ∅ ) ∈ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ) |
16 |
|
0ex |
⊢ ∅ ∈ V |
17 |
|
fveq2 |
⊢ ( 𝑔 = ∅ → ( 𝑓 ‘ 𝑔 ) = ( 𝑓 ‘ ∅ ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑔 = ∅ → ( ( 𝑓 ‘ 𝑔 ) ∈ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ↔ ( 𝑓 ‘ ∅ ) ∈ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ) ) |
19 |
16 18
|
ralsn |
⊢ ( ∀ 𝑔 ∈ { ∅ } ( 𝑓 ‘ 𝑔 ) ∈ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ↔ ( 𝑓 ‘ ∅ ) ∈ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ) |
20 |
15 19
|
sylibr |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → ∀ 𝑔 ∈ { ∅ } ( 𝑓 ‘ 𝑔 ) ∈ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ) |
21 |
|
ffnfv |
⊢ ( 𝑓 : { ∅ } ⟶ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ↔ ( 𝑓 Fn { ∅ } ∧ ∀ 𝑔 ∈ { ∅ } ( 𝑓 ‘ 𝑔 ) ∈ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ) ) |
22 |
10 20 21
|
sylanbrc |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → 𝑓 : { ∅ } ⟶ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ) |
23 |
|
bnj93 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ) |
25 |
|
fsng |
⊢ ( ( ∅ ∈ V ∧ pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ) → ( 𝑓 : { ∅ } ⟶ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ↔ 𝑓 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ) ) |
26 |
16 24 25
|
sylancr |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → ( 𝑓 : { ∅ } ⟶ { pred ( 𝑥 , 𝐴 , 𝑅 ) } ↔ 𝑓 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ) ) |
27 |
22 26
|
mpbid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) → 𝑓 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ) |
28 |
27
|
ex |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) → 𝑓 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ) ) |
29 |
28
|
alrimiv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑓 ( ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) → 𝑓 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ) ) |
30 |
|
mo2icl |
⊢ ( ∀ 𝑓 ( ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) → 𝑓 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ) → ∃* 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) |
32 |
31 1
|
mpbir |
⊢ 𝜃1 |