| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj149.1 |
|- ( th1 <-> ( ( R _FrSe A /\ x e. A ) -> E* f ( f Fn 1o /\ ph' /\ ps' ) ) ) |
| 2 |
|
bnj149.2 |
|- ( ze0 <-> ( f Fn 1o /\ ph' /\ ps' ) ) |
| 3 |
|
bnj149.3 |
|- ( ze1 <-> [. g / f ]. ze0 ) |
| 4 |
|
bnj149.4 |
|- ( ph1 <-> [. g / f ]. ph' ) |
| 5 |
|
bnj149.5 |
|- ( ps1 <-> [. g / f ]. ps' ) |
| 6 |
|
bnj149.6 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
| 7 |
|
simpr1 |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> f Fn 1o ) |
| 8 |
|
df1o2 |
|- 1o = { (/) } |
| 9 |
8
|
fneq2i |
|- ( f Fn 1o <-> f Fn { (/) } ) |
| 10 |
7 9
|
sylib |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> f Fn { (/) } ) |
| 11 |
|
simpr2 |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> ph' ) |
| 12 |
11 6
|
sylib |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> ( f ` (/) ) = _pred ( x , A , R ) ) |
| 13 |
|
fvex |
|- ( f ` (/) ) e. _V |
| 14 |
13
|
elsn |
|- ( ( f ` (/) ) e. { _pred ( x , A , R ) } <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
| 15 |
12 14
|
sylibr |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> ( f ` (/) ) e. { _pred ( x , A , R ) } ) |
| 16 |
|
0ex |
|- (/) e. _V |
| 17 |
|
fveq2 |
|- ( g = (/) -> ( f ` g ) = ( f ` (/) ) ) |
| 18 |
17
|
eleq1d |
|- ( g = (/) -> ( ( f ` g ) e. { _pred ( x , A , R ) } <-> ( f ` (/) ) e. { _pred ( x , A , R ) } ) ) |
| 19 |
16 18
|
ralsn |
|- ( A. g e. { (/) } ( f ` g ) e. { _pred ( x , A , R ) } <-> ( f ` (/) ) e. { _pred ( x , A , R ) } ) |
| 20 |
15 19
|
sylibr |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> A. g e. { (/) } ( f ` g ) e. { _pred ( x , A , R ) } ) |
| 21 |
|
ffnfv |
|- ( f : { (/) } --> { _pred ( x , A , R ) } <-> ( f Fn { (/) } /\ A. g e. { (/) } ( f ` g ) e. { _pred ( x , A , R ) } ) ) |
| 22 |
10 20 21
|
sylanbrc |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> f : { (/) } --> { _pred ( x , A , R ) } ) |
| 23 |
|
bnj93 |
|- ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) e. _V ) |
| 24 |
23
|
adantr |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> _pred ( x , A , R ) e. _V ) |
| 25 |
|
fsng |
|- ( ( (/) e. _V /\ _pred ( x , A , R ) e. _V ) -> ( f : { (/) } --> { _pred ( x , A , R ) } <-> f = { <. (/) , _pred ( x , A , R ) >. } ) ) |
| 26 |
16 24 25
|
sylancr |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> ( f : { (/) } --> { _pred ( x , A , R ) } <-> f = { <. (/) , _pred ( x , A , R ) >. } ) ) |
| 27 |
22 26
|
mpbid |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( f Fn 1o /\ ph' /\ ps' ) ) -> f = { <. (/) , _pred ( x , A , R ) >. } ) |
| 28 |
27
|
ex |
|- ( ( R _FrSe A /\ x e. A ) -> ( ( f Fn 1o /\ ph' /\ ps' ) -> f = { <. (/) , _pred ( x , A , R ) >. } ) ) |
| 29 |
28
|
alrimiv |
|- ( ( R _FrSe A /\ x e. A ) -> A. f ( ( f Fn 1o /\ ph' /\ ps' ) -> f = { <. (/) , _pred ( x , A , R ) >. } ) ) |
| 30 |
|
mo2icl |
|- ( A. f ( ( f Fn 1o /\ ph' /\ ps' ) -> f = { <. (/) , _pred ( x , A , R ) >. } ) -> E* f ( f Fn 1o /\ ph' /\ ps' ) ) |
| 31 |
29 30
|
syl |
|- ( ( R _FrSe A /\ x e. A ) -> E* f ( f Fn 1o /\ ph' /\ ps' ) ) |
| 32 |
31 1
|
mpbir |
|- th1 |