Step |
Hyp |
Ref |
Expression |
1 |
|
trust |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) |
2 |
|
iscfilu |
⊢ ( ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) → ( 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) ) ) |
3 |
2
|
biimpa |
⊢ ( ( ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ( 𝐹 ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) ) |
4 |
1 3
|
stoic3 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ( 𝐹 ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) ) |
5 |
4
|
simpld |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ∈ ( fBas ‘ 𝐴 ) ) |
6 |
|
fbsspw |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐴 ) → 𝐹 ⊆ 𝒫 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ⊆ 𝒫 𝐴 ) |
8 |
|
simp2 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐴 ⊆ 𝑋 ) |
9 |
8
|
sspwd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝒫 𝐴 ⊆ 𝒫 𝑋 ) |
10 |
7 9
|
sstrd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
11 |
|
simp1 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
12 |
11
|
elfvexd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝑋 ∈ V ) |
13 |
|
fbasweak |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐴 ) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
14 |
5 10 12 13
|
syl3anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
15 |
|
sseq2 |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑎 × 𝑎 ) ⊆ 𝑢 ↔ ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ↔ ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
17 |
4
|
simprd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) |
19 |
11
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
20 |
12
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝑋 ∈ V ) |
21 |
8
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝐴 ⊆ 𝑋 ) |
22 |
20 21
|
ssexd |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝐴 ∈ V ) |
23 |
22 22
|
xpexd |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝐴 × 𝐴 ) ∈ V ) |
24 |
|
simpr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ 𝑈 ) |
25 |
|
elrestr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) |
26 |
19 23 24 25
|
syl3anc |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) |
27 |
16 18 26
|
rspcdva |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
28 |
|
inss1 |
⊢ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 |
29 |
|
sstr |
⊢ ( ( ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ∧ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ) → ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
30 |
28 29
|
mpan2 |
⊢ ( ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
31 |
30
|
reximi |
⊢ ( ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
32 |
27 31
|
syl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
33 |
32
|
ralrimiva |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
34 |
|
iscfilu |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
36 |
14 33 35
|
mpbir2and |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) |