Description: A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | cfiluweak | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trust | |
|
2 | iscfilu | |
|
3 | 2 | biimpa | |
4 | 1 3 | stoic3 | |
5 | 4 | simpld | |
6 | fbsspw | |
|
7 | 5 6 | syl | |
8 | simp2 | |
|
9 | 8 | sspwd | |
10 | 7 9 | sstrd | |
11 | simp1 | |
|
12 | 11 | elfvexd | |
13 | fbasweak | |
|
14 | 5 10 12 13 | syl3anc | |
15 | sseq2 | |
|
16 | 15 | rexbidv | |
17 | 4 | simprd | |
18 | 17 | adantr | |
19 | 11 | adantr | |
20 | 12 | adantr | |
21 | 8 | adantr | |
22 | 20 21 | ssexd | |
23 | 22 22 | xpexd | |
24 | simpr | |
|
25 | elrestr | |
|
26 | 19 23 24 25 | syl3anc | |
27 | 16 18 26 | rspcdva | |
28 | inss1 | |
|
29 | sstr | |
|
30 | 28 29 | mpan2 | |
31 | 30 | reximi | |
32 | 27 31 | syl | |
33 | 32 | ralrimiva | |
34 | iscfilu | |
|
35 | 34 | 3ad2ant1 | |
36 | 14 33 35 | mpbir2and | |