Step |
Hyp |
Ref |
Expression |
1 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
6 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
7 |
3 5 6
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
8 |
2 7
|
negsubd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + - ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
9 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
10 |
3 5 9
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + - ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
12 |
|
remim |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
13 |
8 11 12
|
3eqtr4rd |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) |
14 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) = 𝐴 ↔ ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
16 |
5
|
negcld |
⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
17 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ - ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
18 |
3 16 17
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · - ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
19 |
2 18 7
|
addcand |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ↔ ( i · - ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
20 |
|
eqcom |
⊢ ( - ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 𝐴 ) ↔ ( ℑ ‘ 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) |
21 |
5
|
eqnegd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) = - ( ℑ ‘ 𝐴 ) ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
22 |
20 21
|
syl5bb |
⊢ ( 𝐴 ∈ ℂ → ( - ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 𝐴 ) ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
23 |
|
ine0 |
⊢ i ≠ 0 |
24 |
3 23
|
pm3.2i |
⊢ ( i ∈ ℂ ∧ i ≠ 0 ) |
25 |
24
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( i ∈ ℂ ∧ i ≠ 0 ) ) |
26 |
|
mulcan |
⊢ ( ( - ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( i · - ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ↔ - ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 𝐴 ) ) ) |
27 |
16 5 25 26
|
syl3anc |
⊢ ( 𝐴 ∈ ℂ → ( ( i · - ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ↔ - ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 𝐴 ) ) ) |
28 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
29 |
22 27 28
|
3bitr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · - ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ↔ 𝐴 ∈ ℝ ) ) |
30 |
15 19 29
|
3bitrrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) ) |