Step |
Hyp |
Ref |
Expression |
1 |
|
climinf3.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climinf3.2 |
⊢ Ⅎ 𝑘 𝐹 |
3 |
|
climinf3.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
climinf3.4 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
climinf3.5 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
6 |
|
climinf3.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
7 |
|
climinf3.7 |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
8 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
10 |
1 9
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
11 |
2 4
|
climbddf |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
12 |
3 7 10 11
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
13 |
|
renegcl |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → - 𝑥 ∈ ℝ ) |
15 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 ∈ ℝ |
16 |
1 15
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑥 ∈ ℝ ) |
17 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 |
18 |
16 17
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
19 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝜑 ∧ 𝑥 ∈ ℝ ) ) |
20 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
21 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
22 |
21
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
23 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
24 |
8
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
25 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
26 |
24 25
|
absled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ↔ ( - 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) ) |
27 |
23 26
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → ( - 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
28 |
27
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → - 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
29 |
19 20 22 28
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ∧ 𝑘 ∈ 𝑍 ) → - 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
30 |
29
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → ( 𝑘 ∈ 𝑍 → - 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
31 |
18 30
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → ∀ 𝑘 ∈ 𝑍 - 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
32 |
|
breq1 |
⊢ ( 𝑦 = - 𝑥 → ( 𝑦 ≤ ( 𝐹 ‘ 𝑘 ) ↔ - 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
33 |
32
|
ralbidv |
⊢ ( 𝑦 = - 𝑥 → ( ∀ 𝑘 ∈ 𝑍 𝑦 ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝑍 - 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
34 |
33
|
rspcev |
⊢ ( ( - 𝑥 ∈ ℝ ∧ ∀ 𝑘 ∈ 𝑍 - 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑦 ≤ ( 𝐹 ‘ 𝑘 ) ) |
35 |
14 31 34
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑦 ≤ ( 𝐹 ‘ 𝑘 ) ) |
36 |
35
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑦 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
37 |
12 36
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑦 ≤ ( 𝐹 ‘ 𝑘 ) ) |
38 |
1 2 4 3 5 6 37
|
climinf2 |
⊢ ( 𝜑 → 𝐹 ⇝ inf ( ran 𝐹 , ℝ* , < ) ) |