Metamath Proof Explorer


Theorem climinf3

Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climinf3.1 kφ
climinf3.2 _kF
climinf3.3 φM
climinf3.4 Z=M
climinf3.5 φF:Z
climinf3.6 φkZFk+1Fk
climinf3.7 φFdom
Assertion climinf3 φFsupranF*<

Proof

Step Hyp Ref Expression
1 climinf3.1 kφ
2 climinf3.2 _kF
3 climinf3.3 φM
4 climinf3.4 Z=M
5 climinf3.5 φF:Z
6 climinf3.6 φkZFk+1Fk
7 climinf3.7 φFdom
8 5 ffvelcdmda φkZFk
9 8 recnd φkZFk
10 1 9 ralrimia φkZFk
11 2 4 climbddf MFdomkZFkxkZFkx
12 3 7 10 11 syl3anc φxkZFkx
13 renegcl xx
14 13 ad2antlr φxkZFkxx
15 nfv kx
16 1 15 nfan kφx
17 nfra1 kkZFkx
18 16 17 nfan kφxkZFkx
19 simpll φxkZFkxkZφx
20 simpr φxkZFkxkZkZ
21 rspa kZFkxkZFkx
22 21 adantll φxkZFkxkZFkx
23 simpr φxkZFkxFkx
24 8 ad4ant13 φxkZFkxFk
25 simpllr φxkZFkxx
26 24 25 absled φxkZFkxFkxxFkFkx
27 23 26 mpbid φxkZFkxxFkFkx
28 27 simpld φxkZFkxxFk
29 19 20 22 28 syl21anc φxkZFkxkZxFk
30 29 ex φxkZFkxkZxFk
31 18 30 ralrimi φxkZFkxkZxFk
32 breq1 y=xyFkxFk
33 32 ralbidv y=xkZyFkkZxFk
34 33 rspcev xkZxFkykZyFk
35 14 31 34 syl2anc φxkZFkxykZyFk
36 35 rexlimdva2 φxkZFkxykZyFk
37 12 36 mpd φykZyFk
38 1 2 4 3 5 6 37 climinf2 φFsupranF*<