Metamath Proof Explorer


Theorem climinf3

Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climinf3.1 k φ
climinf3.2 _ k F
climinf3.3 φ M
climinf3.4 Z = M
climinf3.5 φ F : Z
climinf3.6 φ k Z F k + 1 F k
climinf3.7 φ F dom
Assertion climinf3 φ F sup ran F * <

Proof

Step Hyp Ref Expression
1 climinf3.1 k φ
2 climinf3.2 _ k F
3 climinf3.3 φ M
4 climinf3.4 Z = M
5 climinf3.5 φ F : Z
6 climinf3.6 φ k Z F k + 1 F k
7 climinf3.7 φ F dom
8 5 ffvelrnda φ k Z F k
9 8 recnd φ k Z F k
10 1 9 ralrimia φ k Z F k
11 2 4 climbddf M F dom k Z F k x k Z F k x
12 3 7 10 11 syl3anc φ x k Z F k x
13 renegcl x x
14 13 ad2antlr φ x k Z F k x x
15 nfv k x
16 1 15 nfan k φ x
17 nfra1 k k Z F k x
18 16 17 nfan k φ x k Z F k x
19 simpll φ x k Z F k x k Z φ x
20 simpr φ x k Z F k x k Z k Z
21 rspa k Z F k x k Z F k x
22 21 adantll φ x k Z F k x k Z F k x
23 simpr φ x k Z F k x F k x
24 8 ad4ant13 φ x k Z F k x F k
25 simpllr φ x k Z F k x x
26 24 25 absled φ x k Z F k x F k x x F k F k x
27 23 26 mpbid φ x k Z F k x x F k F k x
28 27 simpld φ x k Z F k x x F k
29 19 20 22 28 syl21anc φ x k Z F k x k Z x F k
30 29 ex φ x k Z F k x k Z x F k
31 18 30 ralrimi φ x k Z F k x k Z x F k
32 breq1 y = x y F k x F k
33 32 ralbidv y = x k Z y F k k Z x F k
34 33 rspcev x k Z x F k y k Z y F k
35 14 31 34 syl2anc φ x k Z F k x y k Z y F k
36 35 rexlimdva2 φ x k Z F k x y k Z y F k
37 12 36 mpd φ y k Z y F k
38 1 2 4 3 5 6 37 climinf2 φ F sup ran F * <