Metamath Proof Explorer


Theorem clsk1indlem1

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) does not have the K1 property of isotony. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) )
Assertion clsk1indlem1 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ( 𝑠𝑡 ∧ ¬ ( 𝐾𝑠 ) ⊆ ( 𝐾𝑡 ) )

Proof

Step Hyp Ref Expression
1 clsk1indlem.k 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) )
2 tpex { ∅ , 1o , 2o } ∈ V
3 snsstp1 { ∅ } ⊆ { ∅ , 1o , 2o }
4 2 3 elpwi2 { ∅ } ∈ 𝒫 { ∅ , 1o , 2o }
5 df3o2 3o = { ∅ , 1o , 2o }
6 5 pweqi 𝒫 3o = 𝒫 { ∅ , 1o , 2o }
7 4 6 eleqtrri { ∅ } ∈ 𝒫 3o
8 2 a1i ( ⊤ → { ∅ , 1o , 2o } ∈ V )
9 3 a1i ( ⊤ → { ∅ } ⊆ { ∅ , 1o , 2o } )
10 0ex ∅ ∈ V
11 10 snss ( ∅ ∈ { ∅ , 1o , 2o } ↔ { ∅ } ⊆ { ∅ , 1o , 2o } )
12 9 11 sylibr ( ⊤ → ∅ ∈ { ∅ , 1o , 2o } )
13 snsstp3 { 2o } ⊆ { ∅ , 1o , 2o }
14 13 a1i ( ⊤ → { 2o } ⊆ { ∅ , 1o , 2o } )
15 2oex 2o ∈ V
16 15 snss ( 2o ∈ { ∅ , 1o , 2o } ↔ { 2o } ⊆ { ∅ , 1o , 2o } )
17 14 16 sylibr ( ⊤ → 2o ∈ { ∅ , 1o , 2o } )
18 12 17 prssd ( ⊤ → { ∅ , 2o } ⊆ { ∅ , 1o , 2o } )
19 8 18 sselpwd ( ⊤ → { ∅ , 2o } ∈ 𝒫 { ∅ , 1o , 2o } )
20 19 mptru { ∅ , 2o } ∈ 𝒫 { ∅ , 1o , 2o }
21 20 6 eleqtrri { ∅ , 2o } ∈ 𝒫 3o
22 simpl ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → { ∅ } ∈ 𝒫 3o )
23 sseq1 ( 𝑠 = { ∅ } → ( 𝑠𝑡 ↔ { ∅ } ⊆ 𝑡 ) )
24 fveq2 ( 𝑠 = { ∅ } → ( 𝐾𝑠 ) = ( 𝐾 ‘ { ∅ } ) )
25 24 sseq1d ( 𝑠 = { ∅ } → ( ( 𝐾𝑠 ) ⊆ ( 𝐾𝑡 ) ↔ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ) )
26 25 notbid ( 𝑠 = { ∅ } → ( ¬ ( 𝐾𝑠 ) ⊆ ( 𝐾𝑡 ) ↔ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ) )
27 23 26 anbi12d ( 𝑠 = { ∅ } → ( ( 𝑠𝑡 ∧ ¬ ( 𝐾𝑠 ) ⊆ ( 𝐾𝑡 ) ) ↔ ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ) ) )
28 27 rexbidv ( 𝑠 = { ∅ } → ( ∃ 𝑡 ∈ 𝒫 3o ( 𝑠𝑡 ∧ ¬ ( 𝐾𝑠 ) ⊆ ( 𝐾𝑡 ) ) ↔ ∃ 𝑡 ∈ 𝒫 3o ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ) ) )
29 28 adantl ( ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) ∧ 𝑠 = { ∅ } ) → ( ∃ 𝑡 ∈ 𝒫 3o ( 𝑠𝑡 ∧ ¬ ( 𝐾𝑠 ) ⊆ ( 𝐾𝑡 ) ) ↔ ∃ 𝑡 ∈ 𝒫 3o ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ) ) )
30 simpr ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → { ∅ , 2o } ∈ 𝒫 3o )
31 fveq2 ( 𝑡 = { ∅ , 2o } → ( 𝐾𝑡 ) = ( 𝐾 ‘ { ∅ , 2o } ) )
32 31 sseq2d ( 𝑡 = { ∅ , 2o } → ( ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ↔ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) )
33 32 notbid ( 𝑡 = { ∅ , 2o } → ( ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ↔ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) )
34 33 cleq2lem ( 𝑡 = { ∅ , 2o } → ( ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ) ↔ ( { ∅ } ⊆ { ∅ , 2o } ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) ) )
35 34 adantl ( ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) ∧ 𝑡 = { ∅ , 2o } ) → ( ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ) ↔ ( { ∅ } ⊆ { ∅ , 2o } ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) ) )
36 1oex 1o ∈ V
37 36 prid2 1o ∈ { ∅ , 1o }
38 iftrue ( 𝑟 = { ∅ } → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = { ∅ , 1o } )
39 prex { ∅ , 1o } ∈ V
40 38 1 39 fvmpt ( { ∅ } ∈ 𝒫 3o → ( 𝐾 ‘ { ∅ } ) = { ∅ , 1o } )
41 40 adantr ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ( 𝐾 ‘ { ∅ } ) = { ∅ , 1o } )
42 37 41 eleqtrrid ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → 1o ∈ ( 𝐾 ‘ { ∅ } ) )
43 1n0 1o ≠ ∅
44 43 neii ¬ 1o = ∅
45 eqcom ( 1o = 2o ↔ 2o = 1o )
46 df-2o 2o = suc 1o
47 df-1o 1o = suc ∅
48 46 47 eqeq12i ( 2o = 1o ↔ suc 1o = suc ∅ )
49 suc11reg ( suc 1o = suc ∅ ↔ 1o = ∅ )
50 45 48 49 3bitri ( 1o = 2o ↔ 1o = ∅ )
51 43 50 nemtbir ¬ 1o = 2o
52 44 51 pm3.2ni ¬ ( 1o = ∅ ∨ 1o = 2o )
53 elpri ( 1o ∈ { ∅ , 2o } → ( 1o = ∅ ∨ 1o = 2o ) )
54 52 53 mto ¬ 1o ∈ { ∅ , 2o }
55 54 a1i ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ¬ 1o ∈ { ∅ , 2o } )
56 eqeq1 ( 𝑟 = { ∅ , 2o } → ( 𝑟 = { ∅ } ↔ { ∅ , 2o } = { ∅ } ) )
57 id ( 𝑟 = { ∅ , 2o } → 𝑟 = { ∅ , 2o } )
58 56 57 ifbieq2d ( 𝑟 = { ∅ , 2o } → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = if ( { ∅ , 2o } = { ∅ } , { ∅ , 1o } , { ∅ , 2o } ) )
59 15 prid2 2o ∈ { ∅ , 2o }
60 2on0 2o ≠ ∅
61 nelsn ( 2o ≠ ∅ → ¬ 2o ∈ { ∅ } )
62 60 61 ax-mp ¬ 2o ∈ { ∅ }
63 nelneq2 ( ( 2o ∈ { ∅ , 2o } ∧ ¬ 2o ∈ { ∅ } ) → ¬ { ∅ , 2o } = { ∅ } )
64 59 62 63 mp2an ¬ { ∅ , 2o } = { ∅ }
65 64 iffalsei if ( { ∅ , 2o } = { ∅ } , { ∅ , 1o } , { ∅ , 2o } ) = { ∅ , 2o }
66 58 65 eqtrdi ( 𝑟 = { ∅ , 2o } → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = { ∅ , 2o } )
67 prex { ∅ , 2o } ∈ V
68 66 1 67 fvmpt ( { ∅ , 2o } ∈ 𝒫 3o → ( 𝐾 ‘ { ∅ , 2o } ) = { ∅ , 2o } )
69 68 adantl ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ( 𝐾 ‘ { ∅ , 2o } ) = { ∅ , 2o } )
70 55 69 neleqtrrd ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ¬ 1o ∈ ( 𝐾 ‘ { ∅ , 2o } ) )
71 nelss ( ( 1o ∈ ( 𝐾 ‘ { ∅ } ) ∧ ¬ 1o ∈ ( 𝐾 ‘ { ∅ , 2o } ) ) → ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) )
72 42 70 71 syl2anc ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) )
73 snsspr1 { ∅ } ⊆ { ∅ , 2o }
74 72 73 jctil ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ( { ∅ } ⊆ { ∅ , 2o } ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) )
75 30 35 74 rspcedvd ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ∃ 𝑡 ∈ 𝒫 3o ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾𝑡 ) ) )
76 22 29 75 rspcedvd ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ∃ 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ( 𝑠𝑡 ∧ ¬ ( 𝐾𝑠 ) ⊆ ( 𝐾𝑡 ) ) )
77 7 21 76 mp2an 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ( 𝑠𝑡 ∧ ¬ ( 𝐾𝑠 ) ⊆ ( 𝐾𝑡 ) )