Step |
Hyp |
Ref |
Expression |
1 |
|
clsk1indlem.k |
⊢ 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) |
2 |
|
tpex |
⊢ { ∅ , 1o , 2o } ∈ V |
3 |
|
snsstp1 |
⊢ { ∅ } ⊆ { ∅ , 1o , 2o } |
4 |
2 3
|
elpwi2 |
⊢ { ∅ } ∈ 𝒫 { ∅ , 1o , 2o } |
5 |
|
df3o2 |
⊢ 3o = { ∅ , 1o , 2o } |
6 |
5
|
pweqi |
⊢ 𝒫 3o = 𝒫 { ∅ , 1o , 2o } |
7 |
4 6
|
eleqtrri |
⊢ { ∅ } ∈ 𝒫 3o |
8 |
2
|
a1i |
⊢ ( ⊤ → { ∅ , 1o , 2o } ∈ V ) |
9 |
3
|
a1i |
⊢ ( ⊤ → { ∅ } ⊆ { ∅ , 1o , 2o } ) |
10 |
|
0ex |
⊢ ∅ ∈ V |
11 |
10
|
snss |
⊢ ( ∅ ∈ { ∅ , 1o , 2o } ↔ { ∅ } ⊆ { ∅ , 1o , 2o } ) |
12 |
9 11
|
sylibr |
⊢ ( ⊤ → ∅ ∈ { ∅ , 1o , 2o } ) |
13 |
|
snsstp3 |
⊢ { 2o } ⊆ { ∅ , 1o , 2o } |
14 |
13
|
a1i |
⊢ ( ⊤ → { 2o } ⊆ { ∅ , 1o , 2o } ) |
15 |
|
2oex |
⊢ 2o ∈ V |
16 |
15
|
snss |
⊢ ( 2o ∈ { ∅ , 1o , 2o } ↔ { 2o } ⊆ { ∅ , 1o , 2o } ) |
17 |
14 16
|
sylibr |
⊢ ( ⊤ → 2o ∈ { ∅ , 1o , 2o } ) |
18 |
12 17
|
prssd |
⊢ ( ⊤ → { ∅ , 2o } ⊆ { ∅ , 1o , 2o } ) |
19 |
8 18
|
sselpwd |
⊢ ( ⊤ → { ∅ , 2o } ∈ 𝒫 { ∅ , 1o , 2o } ) |
20 |
19
|
mptru |
⊢ { ∅ , 2o } ∈ 𝒫 { ∅ , 1o , 2o } |
21 |
20 6
|
eleqtrri |
⊢ { ∅ , 2o } ∈ 𝒫 3o |
22 |
|
simpl |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → { ∅ } ∈ 𝒫 3o ) |
23 |
|
sseq1 |
⊢ ( 𝑠 = { ∅ } → ( 𝑠 ⊆ 𝑡 ↔ { ∅ } ⊆ 𝑡 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑠 = { ∅ } → ( 𝐾 ‘ 𝑠 ) = ( 𝐾 ‘ { ∅ } ) ) |
25 |
24
|
sseq1d |
⊢ ( 𝑠 = { ∅ } → ( ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ↔ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) |
26 |
25
|
notbid |
⊢ ( 𝑠 = { ∅ } → ( ¬ ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ↔ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) |
27 |
23 26
|
anbi12d |
⊢ ( 𝑠 = { ∅ } → ( ( 𝑠 ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ↔ ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑠 = { ∅ } → ( ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ↔ ∃ 𝑡 ∈ 𝒫 3o ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |
29 |
28
|
adantl |
⊢ ( ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) ∧ 𝑠 = { ∅ } ) → ( ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ↔ ∃ 𝑡 ∈ 𝒫 3o ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |
30 |
|
simpr |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → { ∅ , 2o } ∈ 𝒫 3o ) |
31 |
|
fveq2 |
⊢ ( 𝑡 = { ∅ , 2o } → ( 𝐾 ‘ 𝑡 ) = ( 𝐾 ‘ { ∅ , 2o } ) ) |
32 |
31
|
sseq2d |
⊢ ( 𝑡 = { ∅ , 2o } → ( ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ↔ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) ) |
33 |
32
|
notbid |
⊢ ( 𝑡 = { ∅ , 2o } → ( ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ↔ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) ) |
34 |
33
|
cleq2lem |
⊢ ( 𝑡 = { ∅ , 2o } → ( ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ↔ ( { ∅ } ⊆ { ∅ , 2o } ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) ∧ 𝑡 = { ∅ , 2o } ) → ( ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ↔ ( { ∅ } ⊆ { ∅ , 2o } ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) ) ) |
36 |
|
1oex |
⊢ 1o ∈ V |
37 |
36
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
38 |
|
iftrue |
⊢ ( 𝑟 = { ∅ } → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = { ∅ , 1o } ) |
39 |
|
prex |
⊢ { ∅ , 1o } ∈ V |
40 |
38 1 39
|
fvmpt |
⊢ ( { ∅ } ∈ 𝒫 3o → ( 𝐾 ‘ { ∅ } ) = { ∅ , 1o } ) |
41 |
40
|
adantr |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ( 𝐾 ‘ { ∅ } ) = { ∅ , 1o } ) |
42 |
37 41
|
eleqtrrid |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → 1o ∈ ( 𝐾 ‘ { ∅ } ) ) |
43 |
|
1n0 |
⊢ 1o ≠ ∅ |
44 |
43
|
neii |
⊢ ¬ 1o = ∅ |
45 |
|
eqcom |
⊢ ( 1o = 2o ↔ 2o = 1o ) |
46 |
|
df-2o |
⊢ 2o = suc 1o |
47 |
|
df-1o |
⊢ 1o = suc ∅ |
48 |
46 47
|
eqeq12i |
⊢ ( 2o = 1o ↔ suc 1o = suc ∅ ) |
49 |
|
suc11reg |
⊢ ( suc 1o = suc ∅ ↔ 1o = ∅ ) |
50 |
45 48 49
|
3bitri |
⊢ ( 1o = 2o ↔ 1o = ∅ ) |
51 |
43 50
|
nemtbir |
⊢ ¬ 1o = 2o |
52 |
44 51
|
pm3.2ni |
⊢ ¬ ( 1o = ∅ ∨ 1o = 2o ) |
53 |
|
elpri |
⊢ ( 1o ∈ { ∅ , 2o } → ( 1o = ∅ ∨ 1o = 2o ) ) |
54 |
52 53
|
mto |
⊢ ¬ 1o ∈ { ∅ , 2o } |
55 |
54
|
a1i |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ¬ 1o ∈ { ∅ , 2o } ) |
56 |
|
eqeq1 |
⊢ ( 𝑟 = { ∅ , 2o } → ( 𝑟 = { ∅ } ↔ { ∅ , 2o } = { ∅ } ) ) |
57 |
|
id |
⊢ ( 𝑟 = { ∅ , 2o } → 𝑟 = { ∅ , 2o } ) |
58 |
56 57
|
ifbieq2d |
⊢ ( 𝑟 = { ∅ , 2o } → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = if ( { ∅ , 2o } = { ∅ } , { ∅ , 1o } , { ∅ , 2o } ) ) |
59 |
15
|
prid2 |
⊢ 2o ∈ { ∅ , 2o } |
60 |
|
2on0 |
⊢ 2o ≠ ∅ |
61 |
|
nelsn |
⊢ ( 2o ≠ ∅ → ¬ 2o ∈ { ∅ } ) |
62 |
60 61
|
ax-mp |
⊢ ¬ 2o ∈ { ∅ } |
63 |
|
nelneq2 |
⊢ ( ( 2o ∈ { ∅ , 2o } ∧ ¬ 2o ∈ { ∅ } ) → ¬ { ∅ , 2o } = { ∅ } ) |
64 |
59 62 63
|
mp2an |
⊢ ¬ { ∅ , 2o } = { ∅ } |
65 |
64
|
iffalsei |
⊢ if ( { ∅ , 2o } = { ∅ } , { ∅ , 1o } , { ∅ , 2o } ) = { ∅ , 2o } |
66 |
58 65
|
eqtrdi |
⊢ ( 𝑟 = { ∅ , 2o } → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = { ∅ , 2o } ) |
67 |
|
prex |
⊢ { ∅ , 2o } ∈ V |
68 |
66 1 67
|
fvmpt |
⊢ ( { ∅ , 2o } ∈ 𝒫 3o → ( 𝐾 ‘ { ∅ , 2o } ) = { ∅ , 2o } ) |
69 |
68
|
adantl |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ( 𝐾 ‘ { ∅ , 2o } ) = { ∅ , 2o } ) |
70 |
55 69
|
neleqtrrd |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ¬ 1o ∈ ( 𝐾 ‘ { ∅ , 2o } ) ) |
71 |
|
nelss |
⊢ ( ( 1o ∈ ( 𝐾 ‘ { ∅ } ) ∧ ¬ 1o ∈ ( 𝐾 ‘ { ∅ , 2o } ) ) → ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) |
72 |
42 70 71
|
syl2anc |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) |
73 |
|
snsspr1 |
⊢ { ∅ } ⊆ { ∅ , 2o } |
74 |
72 73
|
jctil |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ( { ∅ } ⊆ { ∅ , 2o } ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ { ∅ , 2o } ) ) ) |
75 |
30 35 74
|
rspcedvd |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ∃ 𝑡 ∈ 𝒫 3o ( { ∅ } ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ { ∅ } ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) |
76 |
22 29 75
|
rspcedvd |
⊢ ( ( { ∅ } ∈ 𝒫 3o ∧ { ∅ , 2o } ∈ 𝒫 3o ) → ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) |
77 |
7 21 76
|
mp2an |
⊢ ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) |