Step |
Hyp |
Ref |
Expression |
1 |
|
clsnim.k0 |
⊢ ( 𝜑 ↔ ( 𝑘 ‘ ∅ ) = ∅ ) |
2 |
|
clsnim.k1 |
⊢ ( 𝜓 ↔ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) |
3 |
|
clsnim.k2 |
⊢ ( 𝜒 ↔ ∀ 𝑠 ∈ 𝒫 𝑏 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) |
4 |
|
clsnim.k3 |
⊢ ( 𝜃 ↔ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ) |
5 |
|
clsnim.k4 |
⊢ ( 𝜏 ↔ ∀ 𝑠 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) |
6 |
|
3on |
⊢ 3o ∈ On |
7 |
6
|
elexi |
⊢ 3o ∈ V |
8 |
|
eqid |
⊢ ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) |
9 |
|
notnotr |
⊢ ( ¬ ¬ 𝑟 = { ∅ } → 𝑟 = { ∅ } ) |
10 |
9
|
a1i |
⊢ ( 𝑟 ∈ 𝒫 3o → ( ¬ ¬ 𝑟 = { ∅ } → 𝑟 = { ∅ } ) ) |
11 |
|
sssucid |
⊢ 2o ⊆ suc 2o |
12 |
|
2oex |
⊢ 2o ∈ V |
13 |
12
|
elpw |
⊢ ( 2o ∈ 𝒫 suc 2o ↔ 2o ⊆ suc 2o ) |
14 |
11 13
|
mpbir |
⊢ 2o ∈ 𝒫 suc 2o |
15 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
16 |
|
df-3o |
⊢ 3o = suc 2o |
17 |
16
|
eqcomi |
⊢ suc 2o = 3o |
18 |
17
|
pweqi |
⊢ 𝒫 suc 2o = 𝒫 3o |
19 |
14 15 18
|
3eltr3i |
⊢ { ∅ , 1o } ∈ 𝒫 3o |
20 |
19
|
2a1i |
⊢ ( 𝑟 ∈ 𝒫 3o → ( ¬ ¬ 𝑟 = { ∅ } → { ∅ , 1o } ∈ 𝒫 3o ) ) |
21 |
10 20
|
jcad |
⊢ ( 𝑟 ∈ 𝒫 3o → ( ¬ ¬ 𝑟 = { ∅ } → ( 𝑟 = { ∅ } ∧ { ∅ , 1o } ∈ 𝒫 3o ) ) ) |
22 |
21
|
con1d |
⊢ ( 𝑟 ∈ 𝒫 3o → ( ¬ ( 𝑟 = { ∅ } ∧ { ∅ , 1o } ∈ 𝒫 3o ) → ¬ 𝑟 = { ∅ } ) ) |
23 |
22
|
anc2ri |
⊢ ( 𝑟 ∈ 𝒫 3o → ( ¬ ( 𝑟 = { ∅ } ∧ { ∅ , 1o } ∈ 𝒫 3o ) → ( ¬ 𝑟 = { ∅ } ∧ 𝑟 ∈ 𝒫 3o ) ) ) |
24 |
23
|
orrd |
⊢ ( 𝑟 ∈ 𝒫 3o → ( ( 𝑟 = { ∅ } ∧ { ∅ , 1o } ∈ 𝒫 3o ) ∨ ( ¬ 𝑟 = { ∅ } ∧ 𝑟 ∈ 𝒫 3o ) ) ) |
25 |
|
ifel |
⊢ ( if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ∈ 𝒫 3o ↔ ( ( 𝑟 = { ∅ } ∧ { ∅ , 1o } ∈ 𝒫 3o ) ∨ ( ¬ 𝑟 = { ∅ } ∧ 𝑟 ∈ 𝒫 3o ) ) ) |
26 |
24 25
|
sylibr |
⊢ ( 𝑟 ∈ 𝒫 3o → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ∈ 𝒫 3o ) |
27 |
8 26
|
fmpti |
⊢ ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) : 𝒫 3o ⟶ 𝒫 3o |
28 |
7
|
pwex |
⊢ 𝒫 3o ∈ V |
29 |
28 28
|
elmap |
⊢ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ∈ ( 𝒫 3o ↑m 𝒫 3o ) ↔ ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) : 𝒫 3o ⟶ 𝒫 3o ) |
30 |
27 29
|
mpbir |
⊢ ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ∈ ( 𝒫 3o ↑m 𝒫 3o ) |
31 |
8
|
clsk1indlem0 |
⊢ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) = ∅ |
32 |
8
|
clsk1indlem2 |
⊢ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) |
33 |
31 32
|
pm3.2i |
⊢ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) |
34 |
8
|
clsk1indlem3 |
⊢ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) |
35 |
8
|
clsk1indlem4 |
⊢ ∀ 𝑠 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) |
36 |
34 35
|
pm3.2i |
⊢ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) |
37 |
33 36
|
pm3.2i |
⊢ ( ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) |
38 |
8
|
clsk1indlem1 |
⊢ ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) |
39 |
37 38
|
pm3.2i |
⊢ ( ( ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) ∧ ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) |
40 |
|
fveq1 |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( 𝑘 ‘ ∅ ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) ) |
41 |
40
|
eqeq1d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( 𝑘 ‘ ∅ ) = ∅ ↔ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) = ∅ ) ) |
42 |
|
fveq1 |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( 𝑘 ‘ 𝑠 ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) |
43 |
42
|
sseq2d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ↔ 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) |
44 |
43
|
ralbidv |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) |
45 |
41 44
|
anbi12d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ↔ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) ) |
46 |
|
fveq1 |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ) |
47 |
|
fveq1 |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( 𝑘 ‘ 𝑡 ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) |
48 |
42 47
|
uneq12d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) |
49 |
46 48
|
sseq12d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ↔ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) ) |
50 |
49
|
2ralbidv |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) ) |
51 |
|
id |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ) |
52 |
51 42
|
fveq12d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) |
53 |
52 42
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ↔ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) |
54 |
53
|
ralbidv |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) |
55 |
50 54
|
anbi12d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ↔ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) ) |
56 |
45 55
|
anbi12d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ↔ ( ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) ) ) |
57 |
|
rexnal2 |
⊢ ( ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ¬ ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ↔ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) |
58 |
|
pm4.61 |
⊢ ( ¬ ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ↔ ( 𝑠 ⊆ 𝑡 ∧ ¬ ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) |
59 |
42 47
|
sseq12d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ↔ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) |
60 |
59
|
notbid |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ¬ ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ↔ ¬ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) |
61 |
60
|
anbi2d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( 𝑠 ⊆ 𝑡 ∧ ¬ ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ↔ ( 𝑠 ⊆ 𝑡 ∧ ¬ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) ) |
62 |
58 61
|
syl5bb |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ¬ ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ↔ ( 𝑠 ⊆ 𝑡 ∧ ¬ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) ) |
63 |
62
|
2rexbidv |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ¬ ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ↔ ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) ) |
64 |
57 63
|
bitr3id |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ↔ ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) ) |
65 |
56 64
|
anbi12d |
⊢ ( 𝑘 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) → ( ( ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ↔ ( ( ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) ∧ ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) ) ) |
66 |
65
|
rspcev |
⊢ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ∈ ( 𝒫 3o ↑m 𝒫 3o ) ∧ ( ( ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ∪ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ) ) ∧ ∃ 𝑠 ∈ 𝒫 3o ∃ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 ∧ ¬ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑠 ) ⊆ ( ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) ‘ 𝑡 ) ) ) ) → ∃ 𝑘 ∈ ( 𝒫 3o ↑m 𝒫 3o ) ( ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) |
67 |
30 39 66
|
mp2an |
⊢ ∃ 𝑘 ∈ ( 𝒫 3o ↑m 𝒫 3o ) ( ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) |
68 |
|
pweq |
⊢ ( 𝑏 = 3o → 𝒫 𝑏 = 𝒫 3o ) |
69 |
68 68
|
oveq12d |
⊢ ( 𝑏 = 3o → ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) = ( 𝒫 3o ↑m 𝒫 3o ) ) |
70 |
|
pm4.61 |
⊢ ( ¬ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ↔ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ∧ ¬ 𝜓 ) ) |
71 |
1
|
a1i |
⊢ ( 𝑏 = 3o → ( 𝜑 ↔ ( 𝑘 ‘ ∅ ) = ∅ ) ) |
72 |
68
|
raleqdv |
⊢ ( 𝑏 = 3o → ( ∀ 𝑠 ∈ 𝒫 𝑏 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) |
73 |
3 72
|
syl5bb |
⊢ ( 𝑏 = 3o → ( 𝜒 ↔ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) |
74 |
71 73
|
anbi12d |
⊢ ( 𝑏 = 3o → ( ( 𝜑 ∧ 𝜒 ) ↔ ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) ) |
75 |
68
|
raleqdv |
⊢ ( 𝑏 = 3o → ( ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ↔ ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ) ) |
76 |
68 75
|
raleqbidv |
⊢ ( 𝑏 = 3o → ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ) ) |
77 |
4 76
|
syl5bb |
⊢ ( 𝑏 = 3o → ( 𝜃 ↔ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ) ) |
78 |
68
|
raleqdv |
⊢ ( 𝑏 = 3o → ( ∀ 𝑠 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) |
79 |
5 78
|
syl5bb |
⊢ ( 𝑏 = 3o → ( 𝜏 ↔ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) |
80 |
77 79
|
anbi12d |
⊢ ( 𝑏 = 3o → ( ( 𝜃 ∧ 𝜏 ) ↔ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ) |
81 |
74 80
|
anbi12d |
⊢ ( 𝑏 = 3o → ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ↔ ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ) ) |
82 |
68
|
raleqdv |
⊢ ( 𝑏 = 3o → ( ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ↔ ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) |
83 |
68 82
|
raleqbidv |
⊢ ( 𝑏 = 3o → ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) |
84 |
2 83
|
syl5bb |
⊢ ( 𝑏 = 3o → ( 𝜓 ↔ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) |
85 |
84
|
notbid |
⊢ ( 𝑏 = 3o → ( ¬ 𝜓 ↔ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) |
86 |
81 85
|
anbi12d |
⊢ ( 𝑏 = 3o → ( ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ∧ ¬ 𝜓 ) ↔ ( ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) ) |
87 |
70 86
|
syl5bb |
⊢ ( 𝑏 = 3o → ( ¬ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ↔ ( ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) ) |
88 |
69 87
|
rexeqbidv |
⊢ ( 𝑏 = 3o → ( ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ¬ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ↔ ∃ 𝑘 ∈ ( 𝒫 3o ↑m 𝒫 3o ) ( ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) ) |
89 |
88
|
rspcev |
⊢ ( ( 3o ∈ V ∧ ∃ 𝑘 ∈ ( 𝒫 3o ↑m 𝒫 3o ) ( ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) → ∃ 𝑏 ∈ V ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ¬ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ) |
90 |
|
rexnal2 |
⊢ ( ∃ 𝑏 ∈ V ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ¬ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ↔ ¬ ∀ 𝑏 ∈ V ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ) |
91 |
|
ralv |
⊢ ( ∀ 𝑏 ∈ V ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ↔ ∀ 𝑏 ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ) |
92 |
90 91
|
xchbinx |
⊢ ( ∃ 𝑏 ∈ V ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ¬ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ↔ ¬ ∀ 𝑏 ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ) |
93 |
89 92
|
sylib |
⊢ ( ( 3o ∈ V ∧ ∃ 𝑘 ∈ ( 𝒫 3o ↑m 𝒫 3o ) ( ( ( ( 𝑘 ‘ ∅ ) = ∅ ∧ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝑘 ‘ 𝑠 ) ) ∧ ( ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) ) = ( 𝑘 ‘ 𝑠 ) ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝑠 ⊆ 𝑡 → ( 𝑘 ‘ 𝑠 ) ⊆ ( 𝑘 ‘ 𝑡 ) ) ) ) → ¬ ∀ 𝑏 ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) ) |
94 |
7 67 93
|
mp2an |
⊢ ¬ ∀ 𝑏 ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜓 ) |