| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsnim.k0 | ⊢ ( 𝜑  ↔  ( 𝑘 ‘ ∅ )  =  ∅ ) | 
						
							| 2 |  | clsnim.k1 | ⊢ ( 𝜓  ↔  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) | 
						
							| 3 |  | clsnim.k2 | ⊢ ( 𝜒  ↔  ∀ 𝑠  ∈  𝒫  𝑏 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) ) | 
						
							| 4 |  | clsnim.k3 | ⊢ ( 𝜃  ↔  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) ) ) | 
						
							| 5 |  | clsnim.k4 | ⊢ ( 𝜏  ↔  ∀ 𝑠  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) | 
						
							| 6 |  | 3on | ⊢ 3o  ∈  On | 
						
							| 7 | 6 | elexi | ⊢ 3o  ∈  V | 
						
							| 8 |  | eqid | ⊢ ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) | 
						
							| 9 |  | notnotr | ⊢ ( ¬  ¬  𝑟  =  { ∅ }  →  𝑟  =  { ∅ } ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑟  ∈  𝒫  3o  →  ( ¬  ¬  𝑟  =  { ∅ }  →  𝑟  =  { ∅ } ) ) | 
						
							| 11 |  | sssucid | ⊢ 2o  ⊆  suc  2o | 
						
							| 12 |  | 2oex | ⊢ 2o  ∈  V | 
						
							| 13 | 12 | elpw | ⊢ ( 2o  ∈  𝒫  suc  2o  ↔  2o  ⊆  suc  2o ) | 
						
							| 14 | 11 13 | mpbir | ⊢ 2o  ∈  𝒫  suc  2o | 
						
							| 15 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 16 |  | df-3o | ⊢ 3o  =  suc  2o | 
						
							| 17 | 16 | eqcomi | ⊢ suc  2o  =  3o | 
						
							| 18 | 17 | pweqi | ⊢ 𝒫  suc  2o  =  𝒫  3o | 
						
							| 19 | 14 15 18 | 3eltr3i | ⊢ { ∅ ,  1o }  ∈  𝒫  3o | 
						
							| 20 | 19 | 2a1i | ⊢ ( 𝑟  ∈  𝒫  3o  →  ( ¬  ¬  𝑟  =  { ∅ }  →  { ∅ ,  1o }  ∈  𝒫  3o ) ) | 
						
							| 21 | 10 20 | jcad | ⊢ ( 𝑟  ∈  𝒫  3o  →  ( ¬  ¬  𝑟  =  { ∅ }  →  ( 𝑟  =  { ∅ }  ∧  { ∅ ,  1o }  ∈  𝒫  3o ) ) ) | 
						
							| 22 | 21 | con1d | ⊢ ( 𝑟  ∈  𝒫  3o  →  ( ¬  ( 𝑟  =  { ∅ }  ∧  { ∅ ,  1o }  ∈  𝒫  3o )  →  ¬  𝑟  =  { ∅ } ) ) | 
						
							| 23 | 22 | anc2ri | ⊢ ( 𝑟  ∈  𝒫  3o  →  ( ¬  ( 𝑟  =  { ∅ }  ∧  { ∅ ,  1o }  ∈  𝒫  3o )  →  ( ¬  𝑟  =  { ∅ }  ∧  𝑟  ∈  𝒫  3o ) ) ) | 
						
							| 24 | 23 | orrd | ⊢ ( 𝑟  ∈  𝒫  3o  →  ( ( 𝑟  =  { ∅ }  ∧  { ∅ ,  1o }  ∈  𝒫  3o )  ∨  ( ¬  𝑟  =  { ∅ }  ∧  𝑟  ∈  𝒫  3o ) ) ) | 
						
							| 25 |  | ifel | ⊢ ( if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 )  ∈  𝒫  3o  ↔  ( ( 𝑟  =  { ∅ }  ∧  { ∅ ,  1o }  ∈  𝒫  3o )  ∨  ( ¬  𝑟  =  { ∅ }  ∧  𝑟  ∈  𝒫  3o ) ) ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( 𝑟  ∈  𝒫  3o  →  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 )  ∈  𝒫  3o ) | 
						
							| 27 | 8 26 | fmpti | ⊢ ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) : 𝒫  3o ⟶ 𝒫  3o | 
						
							| 28 | 7 | pwex | ⊢ 𝒫  3o  ∈  V | 
						
							| 29 | 28 28 | elmap | ⊢ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  ∈  ( 𝒫  3o  ↑m  𝒫  3o )  ↔  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) : 𝒫  3o ⟶ 𝒫  3o ) | 
						
							| 30 | 27 29 | mpbir | ⊢ ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  ∈  ( 𝒫  3o  ↑m  𝒫  3o ) | 
						
							| 31 | 8 | clsk1indlem0 | ⊢ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ )  =  ∅ | 
						
							| 32 | 8 | clsk1indlem2 | ⊢ ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) | 
						
							| 33 | 31 32 | pm3.2i | ⊢ ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) | 
						
							| 34 | 8 | clsk1indlem3 | ⊢ ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) | 
						
							| 35 | 8 | clsk1indlem4 | ⊢ ∀ 𝑠  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) | 
						
							| 36 | 34 35 | pm3.2i | ⊢ ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) | 
						
							| 37 | 33 36 | pm3.2i | ⊢ ( ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) ) | 
						
							| 38 | 8 | clsk1indlem1 | ⊢ ∃ 𝑠  ∈  𝒫  3o ∃ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  ∧  ¬  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) | 
						
							| 39 | 37 38 | pm3.2i | ⊢ ( ( ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) )  ∧  ∃ 𝑠  ∈  𝒫  3o ∃ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  ∧  ¬  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) | 
						
							| 40 |  | fveq1 | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( 𝑘 ‘ ∅ )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ ) ) | 
						
							| 41 | 40 | eqeq1d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( 𝑘 ‘ ∅ )  =  ∅  ↔  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ )  =  ∅ ) ) | 
						
							| 42 |  | fveq1 | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( 𝑘 ‘ 𝑠 )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) | 
						
							| 43 | 42 | sseq2d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( 𝑠  ⊆  ( 𝑘 ‘ 𝑠 )  ↔  𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) ) | 
						
							| 44 | 43 | ralbidv | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 )  ↔  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) ) | 
						
							| 45 | 41 44 | anbi12d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ↔  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) ) ) | 
						
							| 46 |  | fveq1 | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) ) ) | 
						
							| 47 |  | fveq1 | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( 𝑘 ‘ 𝑡 )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) | 
						
							| 48 | 42 47 | uneq12d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) | 
						
							| 49 | 46 48 | sseq12d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ↔  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 50 | 49 | 2ralbidv | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ↔  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 51 |  | id | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ) | 
						
							| 52 | 51 42 | fveq12d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) ) | 
						
							| 53 | 52 42 | eqeq12d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 )  ↔  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) ) | 
						
							| 54 | 53 | ralbidv | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 )  ↔  ∀ 𝑠  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) ) | 
						
							| 55 | 50 54 | anbi12d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) )  ↔  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) ) ) | 
						
							| 56 | 45 55 | anbi12d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) )  ↔  ( ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) ) ) ) | 
						
							| 57 |  | rexnal2 | ⊢ ( ∃ 𝑠  ∈  𝒫  3o ∃ 𝑡  ∈  𝒫  3o ¬  ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) )  ↔  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) | 
						
							| 58 |  | pm4.61 | ⊢ ( ¬  ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) )  ↔  ( 𝑠  ⊆  𝑡  ∧  ¬  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) | 
						
							| 59 | 42 47 | sseq12d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 )  ↔  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) | 
						
							| 60 | 59 | notbid | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ¬  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 )  ↔  ¬  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) | 
						
							| 61 | 60 | anbi2d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( 𝑠  ⊆  𝑡  ∧  ¬  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) )  ↔  ( 𝑠  ⊆  𝑡  ∧  ¬  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 62 | 58 61 | bitrid | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ¬  ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) )  ↔  ( 𝑠  ⊆  𝑡  ∧  ¬  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 63 | 62 | 2rexbidv | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ∃ 𝑠  ∈  𝒫  3o ∃ 𝑡  ∈  𝒫  3o ¬  ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) )  ↔  ∃ 𝑠  ∈  𝒫  3o ∃ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  ∧  ¬  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 64 | 57 63 | bitr3id | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) )  ↔  ∃ 𝑠  ∈  𝒫  3o ∃ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  ∧  ¬  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 65 | 56 64 | anbi12d | ⊢ ( 𝑘  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  →  ( ( ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) )  ↔  ( ( ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) )  ∧  ∃ 𝑠  ∈  𝒫  3o ∃ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  ∧  ¬  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 66 | 65 | rspcev | ⊢ ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) )  ∈  ( 𝒫  3o  ↑m  𝒫  3o )  ∧  ( ( ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ∪  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) )  =  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 ) ) )  ∧  ∃ 𝑠  ∈  𝒫  3o ∃ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  ∧  ¬  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑠 )  ⊆  ( ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑘  ∈  ( 𝒫  3o  ↑m  𝒫  3o ) ( ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) ) | 
						
							| 67 | 30 39 66 | mp2an | ⊢ ∃ 𝑘  ∈  ( 𝒫  3o  ↑m  𝒫  3o ) ( ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) | 
						
							| 68 |  | pweq | ⊢ ( 𝑏  =  3o  →  𝒫  𝑏  =  𝒫  3o ) | 
						
							| 69 | 68 68 | oveq12d | ⊢ ( 𝑏  =  3o  →  ( 𝒫  𝑏  ↑m  𝒫  𝑏 )  =  ( 𝒫  3o  ↑m  𝒫  3o ) ) | 
						
							| 70 |  | pm4.61 | ⊢ ( ¬  ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 )  ↔  ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  ∧  ¬  𝜓 ) ) | 
						
							| 71 | 1 | a1i | ⊢ ( 𝑏  =  3o  →  ( 𝜑  ↔  ( 𝑘 ‘ ∅ )  =  ∅ ) ) | 
						
							| 72 | 68 | raleqdv | ⊢ ( 𝑏  =  3o  →  ( ∀ 𝑠  ∈  𝒫  𝑏 𝑠  ⊆  ( 𝑘 ‘ 𝑠 )  ↔  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) ) ) | 
						
							| 73 | 3 72 | bitrid | ⊢ ( 𝑏  =  3o  →  ( 𝜒  ↔  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) ) ) | 
						
							| 74 | 71 73 | anbi12d | ⊢ ( 𝑏  =  3o  →  ( ( 𝜑  ∧  𝜒 )  ↔  ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) ) ) ) | 
						
							| 75 | 68 | raleqdv | ⊢ ( 𝑏  =  3o  →  ( ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ↔  ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) ) ) ) | 
						
							| 76 | 68 75 | raleqbidv | ⊢ ( 𝑏  =  3o  →  ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ↔  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) ) ) ) | 
						
							| 77 | 4 76 | bitrid | ⊢ ( 𝑏  =  3o  →  ( 𝜃  ↔  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) ) ) ) | 
						
							| 78 | 68 | raleqdv | ⊢ ( 𝑏  =  3o  →  ( ∀ 𝑠  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 )  ↔  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) ) | 
						
							| 79 | 5 78 | bitrid | ⊢ ( 𝑏  =  3o  →  ( 𝜏  ↔  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) ) | 
						
							| 80 | 77 79 | anbi12d | ⊢ ( 𝑏  =  3o  →  ( ( 𝜃  ∧  𝜏 )  ↔  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) ) ) | 
						
							| 81 | 74 80 | anbi12d | ⊢ ( 𝑏  =  3o  →  ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  ↔  ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) ) ) ) | 
						
							| 82 | 68 | raleqdv | ⊢ ( 𝑏  =  3o  →  ( ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) )  ↔  ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) ) | 
						
							| 83 | 68 82 | raleqbidv | ⊢ ( 𝑏  =  3o  →  ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) )  ↔  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) ) | 
						
							| 84 | 2 83 | bitrid | ⊢ ( 𝑏  =  3o  →  ( 𝜓  ↔  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) ) | 
						
							| 85 | 84 | notbid | ⊢ ( 𝑏  =  3o  →  ( ¬  𝜓  ↔  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) ) | 
						
							| 86 | 81 85 | anbi12d | ⊢ ( 𝑏  =  3o  →  ( ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  ∧  ¬  𝜓 )  ↔  ( ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) ) ) | 
						
							| 87 | 70 86 | bitrid | ⊢ ( 𝑏  =  3o  →  ( ¬  ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 )  ↔  ( ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) ) ) | 
						
							| 88 | 69 87 | rexeqbidv | ⊢ ( 𝑏  =  3o  →  ( ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ¬  ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 )  ↔  ∃ 𝑘  ∈  ( 𝒫  3o  ↑m  𝒫  3o ) ( ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) ) ) | 
						
							| 89 | 88 | rspcev | ⊢ ( ( 3o  ∈  V  ∧  ∃ 𝑘  ∈  ( 𝒫  3o  ↑m  𝒫  3o ) ( ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) )  →  ∃ 𝑏  ∈  V ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ¬  ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 ) ) | 
						
							| 90 |  | rexnal2 | ⊢ ( ∃ 𝑏  ∈  V ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ¬  ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 )  ↔  ¬  ∀ 𝑏  ∈  V ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 ) ) | 
						
							| 91 |  | ralv | ⊢ ( ∀ 𝑏  ∈  V ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 )  ↔  ∀ 𝑏 ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 ) ) | 
						
							| 92 | 90 91 | xchbinx | ⊢ ( ∃ 𝑏  ∈  V ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ¬  ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 )  ↔  ¬  ∀ 𝑏 ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 ) ) | 
						
							| 93 | 89 92 | sylib | ⊢ ( ( 3o  ∈  V  ∧  ∃ 𝑘  ∈  ( 𝒫  3o  ↑m  𝒫  3o ) ( ( ( ( 𝑘 ‘ ∅ )  =  ∅  ∧  ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝑘 ‘ 𝑠 ) )  ∧  ( ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  3o ( 𝑘 ‘ ( 𝑘 ‘ 𝑠 ) )  =  ( 𝑘 ‘ 𝑠 ) ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  3o ∀ 𝑡  ∈  𝒫  3o ( 𝑠  ⊆  𝑡  →  ( 𝑘 ‘ 𝑠 )  ⊆  ( 𝑘 ‘ 𝑡 ) ) ) )  →  ¬  ∀ 𝑏 ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 ) ) | 
						
							| 94 | 7 67 93 | mp2an | ⊢ ¬  ∀ 𝑏 ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜃  ∧  𝜏 ) )  →  𝜓 ) |