| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptk1p.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
cnmptk1p.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 3 |
|
cnmptk1p.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
| 4 |
|
cnmptk1p.n |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Comp ) |
| 5 |
|
cnmptk2.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
| 6 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑘 |
| 8 |
6 7
|
nffv |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑋 |
| 10 |
|
nfmpt1 |
⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 11 |
9 10
|
nfmpt |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑤 |
| 13 |
11 12
|
nffv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑘 |
| 15 |
13 14
|
nffv |
⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑤 ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) |
| 18 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
| 19 |
18
|
fveq1d |
⊢ ( 𝑤 = 𝑥 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑘 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑘 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) |
| 21 |
19 20
|
sylan9eq |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑘 = 𝑦 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) |
| 22 |
8 15 16 17 21
|
cbvmpo |
⊢ ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) |
| 23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 24 |
|
nllytop |
⊢ ( 𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top ) |
| 25 |
4 24
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 26 |
|
topontop |
⊢ ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) → 𝐿 ∈ Top ) |
| 27 |
3 26
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 28 |
|
eqid |
⊢ ( 𝐿 ↑ko 𝐾 ) = ( 𝐿 ↑ko 𝐾 ) |
| 29 |
28
|
xkotopon |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 30 |
25 27 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 31 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
| 32 |
1 30 5 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
| 33 |
32
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 35 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 36 |
35
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 37 |
23 34 36
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 38 |
37
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑦 ) ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) |
| 40 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 41 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
| 42 |
|
cnf2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
| 43 |
40 41 33 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
| 44 |
43
|
fvmptelcdm |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) |
| 45 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 46 |
45
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝐴 ∈ 𝑍 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑦 ) = 𝐴 ) |
| 47 |
39 44 46
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑦 ) = 𝐴 ) |
| 48 |
38 47
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) = 𝐴 ) |
| 49 |
48
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) = 𝐴 ) |
| 50 |
49
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 51 |
22 50
|
eqtrid |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 52 |
1 2
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ 𝑤 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 53 |
1 2 52 5
|
cnmpt21f |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
| 54 |
1 2
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ 𝑘 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
| 55 |
|
eqid |
⊢ ( 𝐾 Cn 𝐿 ) = ( 𝐾 Cn 𝐿 ) |
| 56 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
| 57 |
2 56
|
syl |
⊢ ( 𝜑 → 𝑌 = ∪ 𝐾 ) |
| 58 |
|
mpoeq12 |
⊢ ( ( ( 𝐾 Cn 𝐿 ) = ( 𝐾 Cn 𝐿 ) ∧ 𝑌 = ∪ 𝐾 ) → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
| 59 |
55 57 58
|
sylancr |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
| 60 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 61 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) |
| 62 |
60 61
|
xkofvcn |
⊢ ( ( 𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top ) → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 63 |
4 27 62
|
syl2anc |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 64 |
59 63
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 65 |
|
fveq1 |
⊢ ( 𝑓 = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) → ( 𝑓 ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑧 ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑧 = 𝑘 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) |
| 67 |
65 66
|
sylan9eq |
⊢ ( ( 𝑓 = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ∧ 𝑧 = 𝑘 ) → ( 𝑓 ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) |
| 68 |
1 2 53 54 30 2 64 67
|
cnmpt22 |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
| 69 |
51 68
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |