Metamath Proof Explorer


Theorem coseq00topi

Description: Location of the zeroes of cosine in ( 0 , _pi ) . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Assertion coseq00topi ( 𝐴 ∈ ( 0 [,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 = ( π / 2 ) ) )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → ( cos ‘ 𝐴 ) = 0 )
2 simpl ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ( 0 [,] π ) )
3 0re 0 ∈ ℝ
4 pire π ∈ ℝ
5 3 4 elicc2i ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π ) )
6 2 5 sylib ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π ) )
7 6 simp1d ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ )
8 7 ad2antrr ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ )
9 simpr ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 < 𝐴 )
10 simplr ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 < ( π / 2 ) )
11 3 rexri 0 ∈ ℝ*
12 halfpire ( π / 2 ) ∈ ℝ
13 12 rexri ( π / 2 ) ∈ ℝ*
14 elioo2 ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < ( π / 2 ) ) ) )
15 11 13 14 mp2an ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < ( π / 2 ) ) )
16 8 9 10 15 syl3anbrc ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ( 0 (,) ( π / 2 ) ) )
17 sincosq1sgn ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) )
18 16 17 syl ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) )
19 18 simprd ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 < ( cos ‘ 𝐴 ) )
20 19 gt0ne0d ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 )
21 cos0 ( cos ‘ 0 ) = 1
22 simpr ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → 0 = 𝐴 )
23 22 fveq2d ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → ( cos ‘ 0 ) = ( cos ‘ 𝐴 ) )
24 21 23 syl5reqr ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → ( cos ‘ 𝐴 ) = 1 )
25 ax-1ne0 1 ≠ 0
26 25 a1i ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → 1 ≠ 0 )
27 24 26 eqnetrd ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 )
28 6 simp2d ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 0 ≤ 𝐴 )
29 0red ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 0 ∈ ℝ )
30 29 7 leloed ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) )
31 28 30 mpbid ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) )
32 31 adantr ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) )
33 20 27 32 mpjaodan ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → ( cos ‘ 𝐴 ) ≠ 0 )
34 1 33 pm2.21ddne ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → 𝐴 = ( π / 2 ) )
35 simpr ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 = ( π / 2 ) ) → 𝐴 = ( π / 2 ) )
36 simplr ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → ( cos ‘ 𝐴 ) = 0 )
37 7 ad2antrr ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → 𝐴 ∈ ℝ )
38 simplr ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( π / 2 ) < 𝐴 )
39 simpr ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → 𝐴 < π )
40 4 rexri π ∈ ℝ*
41 elioo2 ( ( ( π / 2 ) ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝐴 ∈ ( ( π / 2 ) (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ ( π / 2 ) < 𝐴𝐴 < π ) ) )
42 13 40 41 mp2an ( 𝐴 ∈ ( ( π / 2 ) (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ ( π / 2 ) < 𝐴𝐴 < π ) )
43 37 38 39 42 syl3anbrc ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → 𝐴 ∈ ( ( π / 2 ) (,) π ) )
44 sincosq2sgn ( 𝐴 ∈ ( ( π / 2 ) (,) π ) → ( 0 < ( sin ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < 0 ) )
45 43 44 syl ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( 0 < ( sin ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < 0 ) )
46 45 simprd ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( cos ‘ 𝐴 ) < 0 )
47 46 lt0ne0d ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( cos ‘ 𝐴 ) ≠ 0 )
48 simpr ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → 𝐴 = π )
49 48 fveq2d ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → ( cos ‘ 𝐴 ) = ( cos ‘ π ) )
50 cospi ( cos ‘ π ) = - 1
51 49 50 eqtrdi ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → ( cos ‘ 𝐴 ) = - 1 )
52 neg1ne0 - 1 ≠ 0
53 52 a1i ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → - 1 ≠ 0 )
54 51 53 eqnetrd ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → ( cos ‘ 𝐴 ) ≠ 0 )
55 6 simp3d ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ≤ π )
56 4 a1i ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → π ∈ ℝ )
57 7 56 leloed ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 ≤ π ↔ ( 𝐴 < π ∨ 𝐴 = π ) ) )
58 55 57 mpbid ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 < π ∨ 𝐴 = π ) )
59 58 adantr ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → ( 𝐴 < π ∨ 𝐴 = π ) )
60 47 54 59 mpjaodan ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 )
61 36 60 pm2.21ddne ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → 𝐴 = ( π / 2 ) )
62 56 rehalfcld ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( π / 2 ) ∈ ℝ )
63 7 62 lttri4d ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 < ( π / 2 ) ∨ 𝐴 = ( π / 2 ) ∨ ( π / 2 ) < 𝐴 ) )
64 34 35 61 63 mpjao3dan ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 = ( π / 2 ) )
65 fveq2 ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = ( cos ‘ ( π / 2 ) ) )
66 coshalfpi ( cos ‘ ( π / 2 ) ) = 0
67 65 66 eqtrdi ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = 0 )
68 67 adantl ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐴 = ( π / 2 ) ) → ( cos ‘ 𝐴 ) = 0 )
69 64 68 impbida ( 𝐴 ∈ ( 0 [,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 = ( π / 2 ) ) )