| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → ( cos ‘ 𝐴 ) = 0 ) |
| 2 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ( 0 [,] π ) ) |
| 3 |
|
0re |
⊢ 0 ∈ ℝ |
| 4 |
|
pire |
⊢ π ∈ ℝ |
| 5 |
3 4
|
elicc2i |
⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 6 |
2 5
|
sylib |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 7 |
6
|
simp1d |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 9 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
| 10 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 < ( π / 2 ) ) |
| 11 |
3
|
rexri |
⊢ 0 ∈ ℝ* |
| 12 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 13 |
12
|
rexri |
⊢ ( π / 2 ) ∈ ℝ* |
| 14 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) ) |
| 15 |
11 13 14
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) |
| 16 |
8 9 10 15
|
syl3anbrc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ) |
| 17 |
|
sincosq1sgn |
⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) |
| 19 |
18
|
simprd |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 < ( cos ‘ 𝐴 ) ) |
| 20 |
19
|
gt0ne0d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 21 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → 0 = 𝐴 ) |
| 22 |
21
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → ( cos ‘ 0 ) = ( cos ‘ 𝐴 ) ) |
| 23 |
|
cos0 |
⊢ ( cos ‘ 0 ) = 1 |
| 24 |
22 23
|
eqtr3di |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → ( cos ‘ 𝐴 ) = 1 ) |
| 25 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 26 |
25
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → 1 ≠ 0 ) |
| 27 |
24 26
|
eqnetrd |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 28 |
6
|
simp2d |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 0 ≤ 𝐴 ) |
| 29 |
|
0red |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 0 ∈ ℝ ) |
| 30 |
29 7
|
leloed |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 31 |
28 30
|
mpbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 33 |
20 27 32
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 34 |
1 33
|
pm2.21ddne |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → 𝐴 = ( π / 2 ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 = ( π / 2 ) ) → 𝐴 = ( π / 2 ) ) |
| 36 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → ( cos ‘ 𝐴 ) = 0 ) |
| 37 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → 𝐴 ∈ ℝ ) |
| 38 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( π / 2 ) < 𝐴 ) |
| 39 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → 𝐴 < π ) |
| 40 |
4
|
rexri |
⊢ π ∈ ℝ* |
| 41 |
|
elioo2 |
⊢ ( ( ( π / 2 ) ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝐴 ∈ ( ( π / 2 ) (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ ( π / 2 ) < 𝐴 ∧ 𝐴 < π ) ) ) |
| 42 |
13 40 41
|
mp2an |
⊢ ( 𝐴 ∈ ( ( π / 2 ) (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ ( π / 2 ) < 𝐴 ∧ 𝐴 < π ) ) |
| 43 |
37 38 39 42
|
syl3anbrc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → 𝐴 ∈ ( ( π / 2 ) (,) π ) ) |
| 44 |
|
sincosq2sgn |
⊢ ( 𝐴 ∈ ( ( π / 2 ) (,) π ) → ( 0 < ( sin ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < 0 ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( 0 < ( sin ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < 0 ) ) |
| 46 |
45
|
simprd |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( cos ‘ 𝐴 ) < 0 ) |
| 47 |
46
|
lt0ne0d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 48 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → 𝐴 = π ) |
| 49 |
48
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → ( cos ‘ 𝐴 ) = ( cos ‘ π ) ) |
| 50 |
|
cospi |
⊢ ( cos ‘ π ) = - 1 |
| 51 |
49 50
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → ( cos ‘ 𝐴 ) = - 1 ) |
| 52 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 53 |
52
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → - 1 ≠ 0 ) |
| 54 |
51 53
|
eqnetrd |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 55 |
6
|
simp3d |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ≤ π ) |
| 56 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → π ∈ ℝ ) |
| 57 |
7 56
|
leloed |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 ≤ π ↔ ( 𝐴 < π ∨ 𝐴 = π ) ) ) |
| 58 |
55 57
|
mpbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 < π ∨ 𝐴 = π ) ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → ( 𝐴 < π ∨ 𝐴 = π ) ) |
| 60 |
47 54 59
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 61 |
36 60
|
pm2.21ddne |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → 𝐴 = ( π / 2 ) ) |
| 62 |
56
|
rehalfcld |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( π / 2 ) ∈ ℝ ) |
| 63 |
7 62
|
lttri4d |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 < ( π / 2 ) ∨ 𝐴 = ( π / 2 ) ∨ ( π / 2 ) < 𝐴 ) ) |
| 64 |
34 35 61 63
|
mpjao3dan |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 = ( π / 2 ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = ( cos ‘ ( π / 2 ) ) ) |
| 66 |
|
coshalfpi |
⊢ ( cos ‘ ( π / 2 ) ) = 0 |
| 67 |
65 66
|
eqtrdi |
⊢ ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = 0 ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐴 = ( π / 2 ) ) → ( cos ‘ 𝐴 ) = 0 ) |
| 69 |
64 68
|
impbida |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 = ( π / 2 ) ) ) |