| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmatsrngpmat.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
| 2 |
|
cpmatsrngpmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
cpmatsrngpmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 7 |
1 2 3 4 5 6
|
cpmatelimp2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) ) ) |
| 8 |
1 2 3 4 5 6
|
cpmatelimp2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑦 ∈ 𝑆 → ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) ) ) |
| 9 |
|
r19.26-2 |
⊢ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ∧ ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) ↔ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 11 |
5 10
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 |
11
|
3expb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 14 |
13
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( +g ‘ ( Scalar ‘ 𝑃 ) ) = ( +g ‘ 𝑅 ) ) |
| 16 |
15
|
oveqd |
⊢ ( 𝑅 ∈ Ring → ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 17 |
16
|
eleq1d |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ↔ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ↔ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 19 |
12 18
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 20 |
19
|
ad5ant25 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ∧ ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) ) → ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ) ) |
| 23 |
22
|
eqeq2d |
⊢ ( 𝑐 = ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) → ( ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ↔ ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ) ) ) |
| 24 |
23
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ∧ ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) ) ∧ 𝑐 = ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ) → ( ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ↔ ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ) ) ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) |
| 26 |
25
|
ancomd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) |
| 27 |
26
|
anim1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ∧ ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) |
| 29 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
| 30 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 31 |
3 4 29 30
|
matplusgcell |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( 𝑖 𝑥 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑦 𝑗 ) ) ) |
| 32 |
28 31
|
syl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ∧ ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) ) → ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( 𝑖 𝑥 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑦 𝑗 ) ) ) |
| 33 |
|
oveq12 |
⊢ ( ( ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ∧ ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) → ( ( 𝑖 𝑥 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑦 𝑗 ) ) = ( ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ( +g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) ) |
| 34 |
33
|
ancoms |
⊢ ( ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ∧ ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) → ( ( 𝑖 𝑥 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑦 𝑗 ) ) = ( ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ( +g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) ) |
| 35 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 36 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 37 |
36
|
ad4antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑃 ∈ Ring ) |
| 38 |
2
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 39 |
38
|
ad4antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑃 ∈ LMod ) |
| 40 |
6 35 37 39
|
asclghm |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( algSc ‘ 𝑃 ) ∈ ( ( Scalar ‘ 𝑃 ) GrpHom 𝑃 ) ) |
| 41 |
13
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 43 |
42
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 44 |
43
|
biimpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 46 |
45
|
adantrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 47 |
46
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 48 |
13
|
ad3antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 49 |
48
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 50 |
49
|
eleq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑏 ∈ ( Base ‘ 𝑅 ) ↔ 𝑏 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 51 |
50
|
biimpd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑏 ∈ ( Base ‘ 𝑅 ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 52 |
51
|
adantld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 53 |
52
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 54 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 55 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑃 ) ) = ( +g ‘ ( Scalar ‘ 𝑃 ) ) |
| 56 |
54 55 30
|
ghmlin |
⊢ ( ( ( algSc ‘ 𝑃 ) ∈ ( ( Scalar ‘ 𝑃 ) GrpHom 𝑃 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ) = ( ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ( +g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) ) |
| 57 |
40 47 53 56
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ) = ( ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ( +g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) ) |
| 58 |
57
|
eqcomd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ( +g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ) ) |
| 59 |
34 58
|
sylan9eqr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ∧ ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) ) → ( ( 𝑖 𝑥 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑦 𝑗 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ) ) |
| 60 |
32 59
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ∧ ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) ) → ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑏 ) ) ) |
| 61 |
21 24 60
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ∧ ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) |
| 62 |
61
|
exp32 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ( ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 63 |
62
|
anassrs |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ( ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 64 |
63
|
rexlimdva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ( ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 65 |
64
|
com23 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) → ( ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 66 |
65
|
rexlimdva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) → ( ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 67 |
66
|
impd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ∧ ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) |
| 68 |
67
|
ralimdvva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ∧ ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) |
| 69 |
9 68
|
biimtrrid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) |
| 70 |
69
|
expd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 71 |
70
|
expr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) ) |
| 72 |
71
|
impd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 73 |
72
|
ex |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) ) |
| 74 |
73
|
com34 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) ) |
| 75 |
74
|
impd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑦 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑏 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 76 |
8 75
|
syld |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑦 ∈ 𝑆 → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 77 |
76
|
com23 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ( 𝑖 𝑥 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑎 ) ) → ( 𝑦 ∈ 𝑆 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 78 |
7 77
|
syld |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ 𝑆 → ( 𝑦 ∈ 𝑆 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) ) |
| 79 |
78
|
imp32 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) |
| 80 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑁 ∈ Fin ) |
| 81 |
80
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑁 ∈ Fin ) |
| 82 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 84 |
2 3
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
| 85 |
84
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐶 ∈ Ring ) |
| 86 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 87 |
86
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝑆 ) ) |
| 88 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑆 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝑆 ) ) |
| 89 |
87 88
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑆 ) ) |
| 90 |
1 2 3 4
|
cpmatpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 91 |
89 90
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 92 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 93 |
92
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝑆 ) ) |
| 94 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑆 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝑆 ) ) |
| 95 |
93 94
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑆 ) ) |
| 96 |
1 2 3 4
|
cpmatpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 97 |
95 96
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 98 |
4 29
|
ringacl |
⊢ ( ( 𝐶 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 99 |
85 91 97 98
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 100 |
1 2 3 4 5 6
|
cpmatel2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) |
| 101 |
81 83 99 100
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ) ) |
| 102 |
79 101
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) |
| 103 |
102
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) |