Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
5 |
|
elrp |
⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
6 |
|
rpcxpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ+ ) |
7 |
6
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |
8 |
7
|
ex |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
9 |
5 8
|
sylbir |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
10 |
9
|
impancom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
11 |
|
0le1 |
⊢ 0 ≤ 1 |
12 |
|
0cn |
⊢ 0 ∈ ℂ |
13 |
|
cxp0 |
⊢ ( 0 ∈ ℂ → ( 0 ↑𝑐 0 ) = 1 ) |
14 |
12 13
|
ax-mp |
⊢ ( 0 ↑𝑐 0 ) = 1 |
15 |
11 14
|
breqtrri |
⊢ 0 ≤ ( 0 ↑𝑐 0 ) |
16 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 = 0 ) → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 0 ) ) |
18 |
15 17
|
breqtrrid |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 = 0 ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
19 |
|
0le0 |
⊢ 0 ≤ 0 |
20 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
21 |
|
0cxp |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
22 |
20 21
|
sylan |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
23 |
19 22
|
breqtrrid |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
24 |
18 23
|
pm2.61dane |
⊢ ( 𝐵 ∈ ℝ → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
26 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 ↑𝑐 𝐵 ) = ( 𝐴 ↑𝑐 𝐵 ) ) |
27 |
26
|
breq2d |
⊢ ( 0 = 𝐴 → ( 0 ≤ ( 0 ↑𝑐 𝐵 ) ↔ 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
28 |
25 27
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 = 𝐴 → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
29 |
10 28
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
30 |
4 29
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐴 → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
31 |
30
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |
32 |
31
|
3com23 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |