Metamath Proof Explorer


Theorem cxpge0

Description: Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpge0 A0AB0AB

Proof

Step Hyp Ref Expression
1 0re 0
2 leloe 0A0A0<A0=A
3 1 2 mpan A0A0<A0=A
4 3 adantr AB0A0<A0=A
5 elrp A+A0<A
6 rpcxpcl A+BAB+
7 6 rpge0d A+B0AB
8 7 ex A+B0AB
9 5 8 sylbir A0<AB0AB
10 9 impancom AB0<A0AB
11 0le1 01
12 0cn 0
13 cxp0 000=1
14 12 13 ax-mp 00=1
15 11 14 breqtrri 000
16 simpr BB=0B=0
17 16 oveq2d BB=00B=00
18 15 17 breqtrrid BB=000B
19 0le0 00
20 recn BB
21 0cxp BB00B=0
22 20 21 sylan BB00B=0
23 19 22 breqtrrid BB000B
24 18 23 pm2.61dane B00B
25 24 adantl AB00B
26 oveq1 0=A0B=AB
27 26 breq2d 0=A00B0AB
28 25 27 syl5ibcom AB0=A0AB
29 10 28 jaod AB0<A0=A0AB
30 4 29 sylbid AB0A0AB
31 30 3impia AB0A0AB
32 31 3com23 A0AB0AB