Description: Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 2-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cxpge0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |
|
2 | leloe | |
|
3 | 1 2 | mpan | |
4 | 3 | adantr | |
5 | elrp | |
|
6 | rpcxpcl | |
|
7 | 6 | rpge0d | |
8 | 7 | ex | |
9 | 5 8 | sylbir | |
10 | 9 | impancom | |
11 | 0le1 | |
|
12 | 0cn | |
|
13 | cxp0 | |
|
14 | 12 13 | ax-mp | |
15 | 11 14 | breqtrri | |
16 | simpr | |
|
17 | 16 | oveq2d | |
18 | 15 17 | breqtrrid | |
19 | 0le0 | |
|
20 | recn | |
|
21 | 0cxp | |
|
22 | 20 21 | sylan | |
23 | 19 22 | breqtrrid | |
24 | 18 23 | pm2.61dane | |
25 | 24 | adantl | |
26 | oveq1 | |
|
27 | 26 | breq2d | |
28 | 25 27 | syl5ibcom | |
29 | 10 28 | jaod | |
30 | 4 29 | sylbid | |
31 | 30 | 3impia | |
32 | 31 | 3com23 | |