| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-inf | ⊢ inf ( 𝐴 ,  ℝ ,   <  )  =  sup ( 𝐴 ,  ℝ ,  ◡  <  ) | 
						
							| 2 |  | df-sup | ⊢ sup ( 𝐴 ,  ℝ ,  ◡  <  )  =  ∪  { 𝑥  ∈  ℝ  ∣  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 ◡  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 ) ) } | 
						
							| 3 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℝ ) | 
						
							| 4 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 5 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 6 | 4 5 | brcnv | ⊢ ( 𝑥 ◡  <  𝑦  ↔  𝑦  <  𝑥 ) | 
						
							| 7 | 6 | notbii | ⊢ ( ¬  𝑥 ◡  <  𝑦  ↔  ¬  𝑦  <  𝑥 ) | 
						
							| 8 |  | lenlt | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  ≤  𝑦  ↔  ¬  𝑦  <  𝑥 ) ) | 
						
							| 9 | 7 8 | bitr4id | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ¬  𝑥 ◡  <  𝑦  ↔  𝑥  ≤  𝑦 ) ) | 
						
							| 10 | 3 9 | sylan2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 𝐴  ⊆  ℝ  ∧  𝑦  ∈  𝐴 ) )  →  ( ¬  𝑥 ◡  <  𝑦  ↔  𝑥  ≤  𝑦 ) ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ∈  ℝ )  →  ( ¬  𝑥 ◡  <  𝑦  ↔  𝑥  ≤  𝑦 ) ) | 
						
							| 12 | 11 | an32s | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝑥 ◡  <  𝑦  ↔  𝑥  ≤  𝑦 ) ) | 
						
							| 13 | 12 | ralbidva | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 ◡  <  𝑦  ↔  ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) ) | 
						
							| 14 | 5 4 | brcnv | ⊢ ( 𝑦 ◡  <  𝑥  ↔  𝑥  <  𝑦 ) | 
						
							| 15 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 16 | 5 15 | brcnv | ⊢ ( 𝑦 ◡  <  𝑧  ↔  𝑧  <  𝑦 ) | 
						
							| 17 | 16 | rexbii | ⊢ ( ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧  ↔  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) | 
						
							| 18 | 14 17 | imbi12i | ⊢ ( ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 )  ↔  ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) | 
						
							| 19 | 18 | ralbii | ⊢ ( ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 )  ↔  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 )  ↔  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) | 
						
							| 21 | 13 20 | anbi12d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 ◡  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) ) | 
						
							| 22 | 21 | rabbidva | ⊢ ( 𝐴  ⊆  ℝ  →  { 𝑥  ∈  ℝ  ∣  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 ◡  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 ) ) }  =  { 𝑥  ∈  ℝ  ∣  ( ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) } ) | 
						
							| 23 | 22 | unieqd | ⊢ ( 𝐴  ⊆  ℝ  →  ∪  { 𝑥  ∈  ℝ  ∣  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 ◡  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 ) ) }  =  ∪  { 𝑥  ∈  ℝ  ∣  ( ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) } ) | 
						
							| 24 | 2 23 | eqtrid | ⊢ ( 𝐴  ⊆  ℝ  →  sup ( 𝐴 ,  ℝ ,  ◡  <  )  =  ∪  { 𝑥  ∈  ℝ  ∣  ( ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) } ) | 
						
							| 25 | 1 24 | eqtrid | ⊢ ( 𝐴  ⊆  ℝ  →  inf ( 𝐴 ,  ℝ ,   <  )  =  ∪  { 𝑥  ∈  ℝ  ∣  ( ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) } ) |