Metamath Proof Explorer


Theorem dmqsblocks

Description: If the pet span ( R |X. ( ' E | A ) ) partitions A , then every block u e. A is of the form [ v ] for some v that not only lies in the domain but also has at least one internal element c and at least one R -target b (cf. also the comments of qseq ). It makes explicit that pet gives active representatives for each block, without ever forcing v = u . (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion dmqsblocks ( ( dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) = 𝐴 → ∀ 𝑢𝐴𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑐𝑣𝑣 𝑅 𝑏 ) )

Proof

Step Hyp Ref Expression
1 qseq ( ( dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) = 𝐴 ↔ ∀ 𝑢 ( 𝑢𝐴 ↔ ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) )
2 eqab2 ( ∀ 𝑢 ( 𝑢𝐴 ↔ ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) → ∀ 𝑢𝐴𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) )
3 1 2 sylbi ( ( dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) = 𝐴 → ∀ 𝑢𝐴𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) )
4 rexanid ( ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ( 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) ↔ ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) )
5 eldmxrncnvepres2 ( 𝑣 ∈ V → ( 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↔ ( 𝑣𝐴 ∧ ∃ 𝑐 𝑐𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) ) )
6 5 elv ( 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↔ ( 𝑣𝐴 ∧ ∃ 𝑐 𝑐𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) )
7 3simpc ( ( 𝑣𝐴 ∧ ∃ 𝑐 𝑐𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) → ( ∃ 𝑐 𝑐𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) )
8 6 7 sylbi ( 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) → ( ∃ 𝑐 𝑐𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) )
9 exdistrv ( ∃ 𝑐𝑏 ( 𝑐𝑣𝑣 𝑅 𝑏 ) ↔ ( ∃ 𝑐 𝑐𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) )
10 excom ( ∃ 𝑐𝑏 ( 𝑐𝑣𝑣 𝑅 𝑏 ) ↔ ∃ 𝑏𝑐 ( 𝑐𝑣𝑣 𝑅 𝑏 ) )
11 9 10 bitr3i ( ( ∃ 𝑐 𝑐𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) ↔ ∃ 𝑏𝑐 ( 𝑐𝑣𝑣 𝑅 𝑏 ) )
12 8 11 sylib ( 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) → ∃ 𝑏𝑐 ( 𝑐𝑣𝑣 𝑅 𝑏 ) )
13 12 anim1ci ( ( 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) → ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ ∃ 𝑏𝑐 ( 𝑐𝑣𝑣 𝑅 𝑏 ) ) )
14 3anass ( ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑐𝑣𝑣 𝑅 𝑏 ) ↔ ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ ( 𝑐𝑣𝑣 𝑅 𝑏 ) ) )
15 14 2exbii ( ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑐𝑣𝑣 𝑅 𝑏 ) ↔ ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ ( 𝑐𝑣𝑣 𝑅 𝑏 ) ) )
16 19.42vv ( ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ ( 𝑐𝑣𝑣 𝑅 𝑏 ) ) ↔ ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ ∃ 𝑏𝑐 ( 𝑐𝑣𝑣 𝑅 𝑏 ) ) )
17 15 16 sylbbr ( ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ ∃ 𝑏𝑐 ( 𝑐𝑣𝑣 𝑅 𝑏 ) ) → ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑐𝑣𝑣 𝑅 𝑏 ) )
18 13 17 syl ( ( 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) → ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑐𝑣𝑣 𝑅 𝑏 ) )
19 18 reximi ( ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ( 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) → ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑐𝑣𝑣 𝑅 𝑏 ) )
20 4 19 sylbir ( ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) → ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑐𝑣𝑣 𝑅 𝑏 ) )
21 20 ralimi ( ∀ 𝑢𝐴𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) → ∀ 𝑢𝐴𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑐𝑣𝑣 𝑅 𝑏 ) )
22 3 21 syl ( ( dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) = 𝐴 → ∀ 𝑢𝐴𝑣 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∃ 𝑏𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ 𝑐𝑣𝑣 𝑅 𝑏 ) )