| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frmdup.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
| 2 |
|
frmdup.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
frmdup.e |
⊢ 𝐸 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) |
| 4 |
|
frmdup.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 5 |
|
frmdup.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
| 6 |
|
frmdup.a |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 7 |
1
|
frmdmnd |
⊢ ( 𝐼 ∈ 𝑋 → 𝑀 ∈ Mnd ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → 𝐺 ∈ Mnd ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → 𝑥 ∈ Word 𝐼 ) |
| 11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 12 |
|
wrdco |
⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 𝑥 ) ∈ Word 𝐵 ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐴 ∘ 𝑥 ) ∈ Word 𝐵 ) |
| 14 |
2
|
gsumwcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 ∘ 𝑥 ) ∈ Word 𝐵 ) → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ 𝐵 ) |
| 15 |
9 13 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ 𝐵 ) |
| 16 |
15 3
|
fmptd |
⊢ ( 𝜑 → 𝐸 : Word 𝐼 ⟶ 𝐵 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 18 |
1 17
|
frmdbas |
⊢ ( 𝐼 ∈ 𝑋 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 19 |
5 18
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 20 |
19
|
feq2d |
⊢ ( 𝜑 → ( 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ↔ 𝐸 : Word 𝐼 ⟶ 𝐵 ) ) |
| 21 |
16 20
|
mpbird |
⊢ ( 𝜑 → 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ) |
| 22 |
1 17
|
frmdelbas |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑀 ) → 𝑦 ∈ Word 𝐼 ) |
| 23 |
22
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ Word 𝐼 ) |
| 24 |
1 17
|
frmdelbas |
⊢ ( 𝑧 ∈ ( Base ‘ 𝑀 ) → 𝑧 ∈ Word 𝐼 ) |
| 25 |
24
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑧 ∈ Word 𝐼 ) |
| 26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 27 |
|
ccatco |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) = ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) |
| 28 |
23 25 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) = ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) = ( 𝐺 Σg ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 ∈ Mnd ) |
| 31 |
|
wrdco |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 𝑦 ) ∈ Word 𝐵 ) |
| 32 |
23 26 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐴 ∘ 𝑦 ) ∈ Word 𝐵 ) |
| 33 |
|
wrdco |
⊢ ( ( 𝑧 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 𝑧 ) ∈ Word 𝐵 ) |
| 34 |
25 26 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐴 ∘ 𝑧 ) ∈ Word 𝐵 ) |
| 35 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 36 |
2 35
|
gsumccat |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 ∘ 𝑦 ) ∈ Word 𝐵 ∧ ( 𝐴 ∘ 𝑧 ) ∈ Word 𝐵 ) → ( 𝐺 Σg ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 37 |
30 32 34 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 Σg ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 38 |
29 37
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 39 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 40 |
1 17 39
|
frmdadd |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝐸 ‘ ( 𝑦 ++ 𝑧 ) ) ) |
| 43 |
|
ccatcl |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) |
| 44 |
23 25 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) |
| 45 |
|
coeq2 |
⊢ ( 𝑥 = ( 𝑦 ++ 𝑧 ) → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ++ 𝑧 ) → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
| 47 |
|
ovex |
⊢ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ V |
| 48 |
46 3 47
|
fvmpt3i |
⊢ ( ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 → ( 𝐸 ‘ ( 𝑦 ++ 𝑧 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
| 49 |
44 48
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ++ 𝑧 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
| 50 |
42 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
| 51 |
|
coeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ 𝑦 ) ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ) |
| 53 |
52 3 47
|
fvmpt3i |
⊢ ( 𝑦 ∈ Word 𝐼 → ( 𝐸 ‘ 𝑦 ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ) |
| 54 |
|
coeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ 𝑧 ) ) |
| 55 |
54
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) |
| 56 |
55 3 47
|
fvmpt3i |
⊢ ( 𝑧 ∈ Word 𝐼 → ( 𝐸 ‘ 𝑧 ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) |
| 57 |
53 56
|
oveqan12d |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 58 |
23 25 57
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 59 |
38 50 58
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ) |
| 60 |
59
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ) |
| 61 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐼 |
| 62 |
|
coeq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ ∅ ) ) |
| 63 |
|
co02 |
⊢ ( 𝐴 ∘ ∅ ) = ∅ |
| 64 |
62 63
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∘ 𝑥 ) = ∅ ) |
| 65 |
64
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ∅ ) ) |
| 66 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 67 |
66
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 68 |
65 67
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
| 69 |
68 3 47
|
fvmpt3i |
⊢ ( ∅ ∈ Word 𝐼 → ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) |
| 70 |
61 69
|
mp1i |
⊢ ( 𝜑 → ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) |
| 71 |
21 60 70
|
3jca |
⊢ ( 𝜑 → ( 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ∧ ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) |
| 72 |
1
|
frmd0 |
⊢ ∅ = ( 0g ‘ 𝑀 ) |
| 73 |
17 2 39 35 72 66
|
ismhm |
⊢ ( 𝐸 ∈ ( 𝑀 MndHom 𝐺 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd ) ∧ ( 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ∧ ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 74 |
8 4 71 73
|
syl21anbrc |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑀 MndHom 𝐺 ) ) |