Metamath Proof Explorer


Theorem gruf

Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013)

Ref Expression
Assertion gruf ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → 𝐹𝑈 )

Proof

Step Hyp Ref Expression
1 simp3 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → 𝐹 : 𝐴𝑈 )
2 1 feqmptd ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → 𝐹 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) )
3 fvex ( 𝐹𝑥 ) ∈ V
4 3 fnasrn ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) = ran ( 𝑥𝐴 ↦ ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ )
5 2 4 eqtrdi ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → 𝐹 = ran ( 𝑥𝐴 ↦ ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ ) )
6 simpl1 ( ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) ∧ 𝑥𝐴 ) → 𝑈 ∈ Univ )
7 gruel ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝑥𝐴 ) → 𝑥𝑈 )
8 7 3expa ( ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) ∧ 𝑥𝐴 ) → 𝑥𝑈 )
9 8 3adantl3 ( ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) ∧ 𝑥𝐴 ) → 𝑥𝑈 )
10 ffvelrn ( ( 𝐹 : 𝐴𝑈𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ 𝑈 )
11 10 3ad2antl3 ( ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) ∧ 𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ 𝑈 )
12 gruop ( ( 𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ( 𝐹𝑥 ) ∈ 𝑈 ) → ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ ∈ 𝑈 )
13 6 9 11 12 syl3anc ( ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) ∧ 𝑥𝐴 ) → ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ ∈ 𝑈 )
14 13 fmpttd ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → ( 𝑥𝐴 ↦ ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ ) : 𝐴𝑈 )
15 grurn ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ( 𝑥𝐴 ↦ ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ ) : 𝐴𝑈 ) → ran ( 𝑥𝐴 ↦ ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ ) ∈ 𝑈 )
16 14 15 syld3an3 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → ran ( 𝑥𝐴 ↦ ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ ) ∈ 𝑈 )
17 5 16 eqeltrd ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → 𝐹𝑈 )