| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → 𝐹 : 𝐴 ⟶ 𝑈 ) |
| 2 |
1
|
feqmptd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 4 |
3
|
fnasrn |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
| 5 |
2 4
|
eqtrdi |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → 𝐹 = ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) |
| 6 |
|
simpl1 |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑈 ∈ Univ ) |
| 7 |
|
gruel |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 8 |
7
|
3expa |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 9 |
8
|
3adantl3 |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 10 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑈 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑈 ) |
| 11 |
10
|
3ad2antl3 |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑈 ) |
| 12 |
|
gruop |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑈 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝑈 ) |
| 13 |
6 9 11 12
|
syl3anc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝑈 ) |
| 14 |
13
|
fmpttd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ 𝑈 ) |
| 15 |
|
grurn |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ 𝑈 ) → ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ∈ 𝑈 ) |
| 16 |
14 15
|
syld3an3 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ∈ 𝑈 ) |
| 17 |
5 16
|
eqeltrd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → 𝐹 ∈ 𝑈 ) |