Metamath Proof Explorer


Theorem gtiso

Description: Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Assertion gtiso ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( ( 𝐴 × 𝐴 ) ∖ < ) = ( ( 𝐴 × 𝐴 ) ∖ < )
2 eqid ( ( 𝐵 × 𝐵 ) ∖ < ) = ( ( 𝐵 × 𝐵 ) ∖ < )
3 1 2 isocnv3 ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ < ) , ( ( 𝐵 × 𝐵 ) ∖ < ) ( 𝐴 , 𝐵 ) )
4 3 a1i ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ < ) , ( ( 𝐵 × 𝐵 ) ∖ < ) ( 𝐴 , 𝐵 ) ) )
5 df-le ≤ = ( ( ℝ* × ℝ* ) ∖ < )
6 5 cnveqi ≤ = ( ( ℝ* × ℝ* ) ∖ < )
7 cnvdif ( ( ℝ* × ℝ* ) ∖ < ) = ( ( ℝ* × ℝ* ) ∖ < )
8 cnvxp ( ℝ* × ℝ* ) = ( ℝ* × ℝ* )
9 ltrel Rel <
10 dfrel2 ( Rel < ↔ < = < )
11 9 10 mpbi < = <
12 8 11 difeq12i ( ( ℝ* × ℝ* ) ∖ < ) = ( ( ℝ* × ℝ* ) ∖ < )
13 6 7 12 3eqtri ≤ = ( ( ℝ* × ℝ* ) ∖ < )
14 13 ineq1i ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( ℝ* × ℝ* ) ∖ < ) ∩ ( 𝐴 × 𝐴 ) )
15 indif1 ( ( ( ℝ* × ℝ* ) ∖ < ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) ∖ < )
16 14 15 eqtri ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) ∖ < )
17 xpss12 ( ( 𝐴 ⊆ ℝ*𝐴 ⊆ ℝ* ) → ( 𝐴 × 𝐴 ) ⊆ ( ℝ* × ℝ* ) )
18 17 anidms ( 𝐴 ⊆ ℝ* → ( 𝐴 × 𝐴 ) ⊆ ( ℝ* × ℝ* ) )
19 sseqin2 ( ( 𝐴 × 𝐴 ) ⊆ ( ℝ* × ℝ* ) ↔ ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) )
20 18 19 sylib ( 𝐴 ⊆ ℝ* → ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) )
21 20 difeq1d ( 𝐴 ⊆ ℝ* → ( ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) ∖ < ) = ( ( 𝐴 × 𝐴 ) ∖ < ) )
22 16 21 syl5req ( 𝐴 ⊆ ℝ* → ( ( 𝐴 × 𝐴 ) ∖ < ) = ( ≤ ∩ ( 𝐴 × 𝐴 ) ) )
23 22 adantr ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( ( 𝐴 × 𝐴 ) ∖ < ) = ( ≤ ∩ ( 𝐴 × 𝐴 ) ) )
24 isoeq2 ( ( ( 𝐴 × 𝐴 ) ∖ < ) = ( ≤ ∩ ( 𝐴 × 𝐴 ) ) → ( 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ < ) , ( ( 𝐵 × 𝐵 ) ∖ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ < ) ( 𝐴 , 𝐵 ) ) )
25 23 24 syl ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ < ) , ( ( 𝐵 × 𝐵 ) ∖ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ < ) ( 𝐴 , 𝐵 ) ) )
26 5 ineq1i ( ≤ ∩ ( 𝐵 × 𝐵 ) ) = ( ( ( ℝ* × ℝ* ) ∖ < ) ∩ ( 𝐵 × 𝐵 ) )
27 indif1 ( ( ( ℝ* × ℝ* ) ∖ < ) ∩ ( 𝐵 × 𝐵 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) ∖ < )
28 26 27 eqtri ( ≤ ∩ ( 𝐵 × 𝐵 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) ∖ < )
29 xpss12 ( ( 𝐵 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( 𝐵 × 𝐵 ) ⊆ ( ℝ* × ℝ* ) )
30 29 anidms ( 𝐵 ⊆ ℝ* → ( 𝐵 × 𝐵 ) ⊆ ( ℝ* × ℝ* ) )
31 sseqin2 ( ( 𝐵 × 𝐵 ) ⊆ ( ℝ* × ℝ* ) ↔ ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) = ( 𝐵 × 𝐵 ) )
32 30 31 sylib ( 𝐵 ⊆ ℝ* → ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) = ( 𝐵 × 𝐵 ) )
33 32 difeq1d ( 𝐵 ⊆ ℝ* → ( ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) ∖ < ) = ( ( 𝐵 × 𝐵 ) ∖ < ) )
34 28 33 syl5req ( 𝐵 ⊆ ℝ* → ( ( 𝐵 × 𝐵 ) ∖ < ) = ( ≤ ∩ ( 𝐵 × 𝐵 ) ) )
35 34 adantl ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( ( 𝐵 × 𝐵 ) ∖ < ) = ( ≤ ∩ ( 𝐵 × 𝐵 ) ) )
36 isoeq3 ( ( ( 𝐵 × 𝐵 ) ∖ < ) = ( ≤ ∩ ( 𝐵 × 𝐵 ) ) → ( 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) )
37 35 36 syl ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) )
38 4 25 37 3bitrd ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) )
39 isocnv2 ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) )
40 isores2 ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) )
41 isores1 ( 𝐹 Isom ≤ , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) )
42 40 41 bitri ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) )
43 lerel Rel ≤
44 dfrel2 ( Rel ≤ ↔ ≤ = ≤ )
45 43 44 mpbi ≤ = ≤
46 isoeq2 ( ≤ = ≤ → ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) )
47 45 46 ax-mp ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) )
48 39 42 47 3bitr3ri ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) )
49 38 48 bitr4di ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) )