| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isoun.1 |
⊢ ( 𝜑 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 2 |
|
isoun.2 |
⊢ ( 𝜑 → 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ) |
| 3 |
|
isoun.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → 𝑥 𝑅 𝑦 ) |
| 4 |
|
isoun.4 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) → 𝑧 𝑆 𝑤 ) |
| 5 |
|
isoun.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑦 ) |
| 6 |
|
isoun.6 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐵 ) → ¬ 𝑧 𝑆 𝑤 ) |
| 7 |
|
isoun.7 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) = ∅ ) |
| 8 |
|
isoun.8 |
⊢ ( 𝜑 → ( 𝐵 ∩ 𝐷 ) = ∅ ) |
| 9 |
|
isof1o |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 11 |
|
isof1o |
⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) → 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) |
| 12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) |
| 13 |
|
f1oun |
⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝐻 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐶 ) –1-1-onto→ ( 𝐵 ∪ 𝐷 ) ) |
| 14 |
10 12 7 8 13
|
syl22anc |
⊢ ( 𝜑 → ( 𝐻 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐶 ) –1-1-onto→ ( 𝐵 ∪ 𝐷 ) ) |
| 15 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) ) |
| 16 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶 ) ) |
| 17 |
|
isorel |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 18 |
1 17
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 19 |
|
f1ofn |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Fn 𝐴 ) |
| 20 |
10 19
|
syl |
⊢ ( 𝜑 → 𝐻 Fn 𝐴 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 Fn 𝐴 ) |
| 22 |
|
f1ofn |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 Fn 𝐶 ) |
| 23 |
12 22
|
syl |
⊢ ( 𝜑 → 𝐺 Fn 𝐶 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐺 Fn 𝐶 ) |
| 25 |
7
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) ) |
| 26 |
|
fvun1 |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 27 |
21 24 25 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 28 |
27
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 29 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐻 Fn 𝐴 ) |
| 30 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐺 Fn 𝐶 ) |
| 31 |
7
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ 𝑦 ∈ 𝐴 ) ) |
| 32 |
|
fvun1 |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 33 |
29 30 31 32
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 34 |
33
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 35 |
28 34
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 36 |
18 35
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 37 |
36
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 38 |
3
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 𝑅 𝑦 ) |
| 39 |
4
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑤 ∈ 𝐷 → 𝑧 𝑆 𝑤 ) ) |
| 40 |
39
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∀ 𝑤 ∈ 𝐷 𝑧 𝑆 𝑤 ) |
| 41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐷 𝑧 𝑆 𝑤 ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐷 𝑧 𝑆 𝑤 ) |
| 43 |
|
f1of |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 44 |
10 43
|
syl |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 45 |
44
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
| 46 |
45
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
| 47 |
|
f1of |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 48 |
12 47
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 49 |
48
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐷 ) |
| 50 |
49
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐷 ) |
| 51 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑥 ) → ( 𝑧 𝑆 𝑤 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 𝑤 ) ) |
| 52 |
|
breq2 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑦 ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 𝑤 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) |
| 53 |
51 52
|
rspc2v |
⊢ ( ( ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝐷 ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐷 𝑧 𝑆 𝑤 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) |
| 54 |
46 50 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐷 𝑧 𝑆 𝑤 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) |
| 55 |
42 54
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) |
| 56 |
27
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 57 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐻 Fn 𝐴 ) |
| 58 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐺 Fn 𝐶 ) |
| 59 |
7
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ 𝑦 ∈ 𝐶 ) ) |
| 60 |
|
fvun2 |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 61 |
57 58 59 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 62 |
61
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 63 |
55 56 62
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) |
| 64 |
38 63
|
2thd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 65 |
64
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 66 |
37 65
|
jaodan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 67 |
16 66
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 68 |
67
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 69 |
5
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ¬ 𝑥 𝑅 𝑦 ) |
| 70 |
6
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ( 𝑤 ∈ 𝐵 → ¬ 𝑧 𝑆 𝑤 ) ) |
| 71 |
70
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ∀ 𝑤 ∈ 𝐵 ¬ 𝑧 𝑆 𝑤 ) |
| 72 |
71
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐷 ∀ 𝑤 ∈ 𝐵 ¬ 𝑧 𝑆 𝑤 ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ∀ 𝑧 ∈ 𝐷 ∀ 𝑤 ∈ 𝐵 ¬ 𝑧 𝑆 𝑤 ) |
| 74 |
48
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐷 ) |
| 75 |
74
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐷 ) |
| 76 |
44
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) |
| 77 |
76
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) |
| 78 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑥 ) → ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 𝑤 ) ) |
| 79 |
78
|
notbid |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑥 ) → ( ¬ 𝑧 𝑆 𝑤 ↔ ¬ ( 𝐺 ‘ 𝑥 ) 𝑆 𝑤 ) ) |
| 80 |
|
breq2 |
⊢ ( 𝑤 = ( 𝐻 ‘ 𝑦 ) → ( ( 𝐺 ‘ 𝑥 ) 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 81 |
80
|
notbid |
⊢ ( 𝑤 = ( 𝐻 ‘ 𝑦 ) → ( ¬ ( 𝐺 ‘ 𝑥 ) 𝑆 𝑤 ↔ ¬ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 82 |
79 81
|
rspc2v |
⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐷 ∧ ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐷 ∀ 𝑤 ∈ 𝐵 ¬ 𝑧 𝑆 𝑤 → ¬ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 83 |
75 77 82
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ( ∀ 𝑧 ∈ 𝐷 ∀ 𝑤 ∈ 𝐵 ¬ 𝑧 𝑆 𝑤 → ¬ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 84 |
73 83
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ¬ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) |
| 85 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐻 Fn 𝐴 ) |
| 86 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐺 Fn 𝐶 ) |
| 87 |
7
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ 𝑥 ∈ 𝐶 ) ) |
| 88 |
|
fvun2 |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ 𝑥 ∈ 𝐶 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 89 |
85 86 87 88
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 90 |
89
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 91 |
33
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 92 |
90 91
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 93 |
84 92
|
mtbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ¬ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) |
| 94 |
69 93
|
2falsed |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 95 |
94
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 96 |
|
isorel |
⊢ ( ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) |
| 97 |
2 96
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) |
| 98 |
89
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 99 |
61
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 100 |
98 99
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) |
| 101 |
97 100
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 102 |
101
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 103 |
95 102
|
jaodan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 104 |
16 103
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 105 |
104
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 106 |
68 105
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) ) → ( 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 107 |
15 106
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ) → ( 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 108 |
107
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ) → ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 109 |
108
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) |
| 110 |
|
df-isom |
⊢ ( ( 𝐻 ∪ 𝐺 ) Isom 𝑅 , 𝑆 ( ( 𝐴 ∪ 𝐶 ) , ( 𝐵 ∪ 𝐷 ) ) ↔ ( ( 𝐻 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐶 ) –1-1-onto→ ( 𝐵 ∪ 𝐷 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ∪ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 111 |
14 109 110
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐻 ∪ 𝐺 ) Isom 𝑅 , 𝑆 ( ( 𝐴 ∪ 𝐶 ) , ( 𝐵 ∪ 𝐷 ) ) ) |