Metamath Proof Explorer


Theorem isoun

Description: Infer an isomorphism from a union of two isomorphisms. (Contributed by Thierry Arnoux, 30-Mar-2017)

Ref Expression
Hypotheses isoun.1 φHIsomR,SAB
isoun.2 φGIsomR,SCD
isoun.3 φxAyCxRy
isoun.4 φzBwDzSw
isoun.5 φxCyA¬xRy
isoun.6 φzDwB¬zSw
isoun.7 φAC=
isoun.8 φBD=
Assertion isoun φHGIsomR,SACBD

Proof

Step Hyp Ref Expression
1 isoun.1 φHIsomR,SAB
2 isoun.2 φGIsomR,SCD
3 isoun.3 φxAyCxRy
4 isoun.4 φzBwDzSw
5 isoun.5 φxCyA¬xRy
6 isoun.6 φzDwB¬zSw
7 isoun.7 φAC=
8 isoun.8 φBD=
9 isof1o HIsomR,SABH:A1-1 ontoB
10 1 9 syl φH:A1-1 ontoB
11 isof1o GIsomR,SCDG:C1-1 ontoD
12 2 11 syl φG:C1-1 ontoD
13 f1oun H:A1-1 ontoBG:C1-1 ontoDAC=BD=HG:AC1-1 ontoBD
14 10 12 7 8 13 syl22anc φHG:AC1-1 ontoBD
15 elun xACxAxC
16 elun yACyAyC
17 isorel HIsomR,SABxAyAxRyHxSHy
18 1 17 sylan φxAyAxRyHxSHy
19 f1ofn H:A1-1 ontoBHFnA
20 10 19 syl φHFnA
21 20 adantr φxAHFnA
22 f1ofn G:C1-1 ontoDGFnC
23 12 22 syl φGFnC
24 23 adantr φxAGFnC
25 7 anim1i φxAAC=xA
26 fvun1 HFnAGFnCAC=xAHGx=Hx
27 21 24 25 26 syl3anc φxAHGx=Hx
28 27 adantrr φxAyAHGx=Hx
29 20 adantr φyAHFnA
30 23 adantr φyAGFnC
31 7 anim1i φyAAC=yA
32 fvun1 HFnAGFnCAC=yAHGy=Hy
33 29 30 31 32 syl3anc φyAHGy=Hy
34 33 adantrl φxAyAHGy=Hy
35 28 34 breq12d φxAyAHGxSHGyHxSHy
36 18 35 bitr4d φxAyAxRyHGxSHGy
37 36 anassrs φxAyAxRyHGxSHGy
38 3 3expb φxAyCxRy
39 4 3expia φzBwDzSw
40 39 ralrimiv φzBwDzSw
41 40 ralrimiva φzBwDzSw
42 41 adantr φxAyCzBwDzSw
43 f1of H:A1-1 ontoBH:AB
44 10 43 syl φH:AB
45 44 ffvelcdmda φxAHxB
46 45 adantrr φxAyCHxB
47 f1of G:C1-1 ontoDG:CD
48 12 47 syl φG:CD
49 48 ffvelcdmda φyCGyD
50 49 adantrl φxAyCGyD
51 breq1 z=HxzSwHxSw
52 breq2 w=GyHxSwHxSGy
53 51 52 rspc2v HxBGyDzBwDzSwHxSGy
54 46 50 53 syl2anc φxAyCzBwDzSwHxSGy
55 42 54 mpd φxAyCHxSGy
56 27 adantrr φxAyCHGx=Hx
57 20 adantr φyCHFnA
58 23 adantr φyCGFnC
59 7 anim1i φyCAC=yC
60 fvun2 HFnAGFnCAC=yCHGy=Gy
61 57 58 59 60 syl3anc φyCHGy=Gy
62 61 adantrl φxAyCHGy=Gy
63 55 56 62 3brtr4d φxAyCHGxSHGy
64 38 63 2thd φxAyCxRyHGxSHGy
65 64 anassrs φxAyCxRyHGxSHGy
66 37 65 jaodan φxAyAyCxRyHGxSHGy
67 16 66 sylan2b φxAyACxRyHGxSHGy
68 67 ex φxAyACxRyHGxSHGy
69 5 3expb φxCyA¬xRy
70 6 3expia φzDwB¬zSw
71 70 ralrimiv φzDwB¬zSw
72 71 ralrimiva φzDwB¬zSw
73 72 adantr φxCyAzDwB¬zSw
74 48 ffvelcdmda φxCGxD
75 74 adantrr φxCyAGxD
76 44 ffvelcdmda φyAHyB
77 76 adantrl φxCyAHyB
78 breq1 z=GxzSwGxSw
79 78 notbid z=Gx¬zSw¬GxSw
80 breq2 w=HyGxSwGxSHy
81 80 notbid w=Hy¬GxSw¬GxSHy
82 79 81 rspc2v GxDHyBzDwB¬zSw¬GxSHy
83 75 77 82 syl2anc φxCyAzDwB¬zSw¬GxSHy
84 73 83 mpd φxCyA¬GxSHy
85 20 adantr φxCHFnA
86 23 adantr φxCGFnC
87 7 anim1i φxCAC=xC
88 fvun2 HFnAGFnCAC=xCHGx=Gx
89 85 86 87 88 syl3anc φxCHGx=Gx
90 89 adantrr φxCyAHGx=Gx
91 33 adantrl φxCyAHGy=Hy
92 90 91 breq12d φxCyAHGxSHGyGxSHy
93 84 92 mtbird φxCyA¬HGxSHGy
94 69 93 2falsed φxCyAxRyHGxSHGy
95 94 anassrs φxCyAxRyHGxSHGy
96 isorel GIsomR,SCDxCyCxRyGxSGy
97 2 96 sylan φxCyCxRyGxSGy
98 89 adantrr φxCyCHGx=Gx
99 61 adantrl φxCyCHGy=Gy
100 98 99 breq12d φxCyCHGxSHGyGxSGy
101 97 100 bitr4d φxCyCxRyHGxSHGy
102 101 anassrs φxCyCxRyHGxSHGy
103 95 102 jaodan φxCyAyCxRyHGxSHGy
104 16 103 sylan2b φxCyACxRyHGxSHGy
105 104 ex φxCyACxRyHGxSHGy
106 68 105 jaodan φxAxCyACxRyHGxSHGy
107 15 106 sylan2b φxACyACxRyHGxSHGy
108 107 ralrimiv φxACyACxRyHGxSHGy
109 108 ralrimiva φxACyACxRyHGxSHGy
110 df-isom HGIsomR,SACBDHG:AC1-1 ontoBDxACyACxRyHGxSHGy
111 14 109 110 sylanbrc φHGIsomR,SACBD