Step |
Hyp |
Ref |
Expression |
1 |
|
h2hl.1 |
β’ π = β¨ β¨ +β , Β·β β© , normβ β© |
2 |
|
h2hl.2 |
β’ π β NrmCVec |
3 |
|
h2hl.3 |
β’ β = ( BaseSet β π ) |
4 |
|
h2hl.4 |
β’ π· = ( IndMet β π ) |
5 |
|
h2hl.5 |
β’ π½ = ( MetOpen β π· ) |
6 |
|
df-hlim |
β’ βπ£ = { β¨ π , π₯ β© β£ ( ( π : β βΆ β β§ π₯ β β ) β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) } |
7 |
6
|
relopabiv |
β’ Rel βπ£ |
8 |
|
relres |
β’ Rel ( ( βπ‘ β π½ ) βΎ ( β βm β ) ) |
9 |
6
|
eleq2i |
β’ ( β¨ π , π₯ β© β βπ£ β β¨ π , π₯ β© β { β¨ π , π₯ β© β£ ( ( π : β βΆ β β§ π₯ β β ) β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) } ) |
10 |
|
opabidw |
β’ ( β¨ π , π₯ β© β { β¨ π , π₯ β© β£ ( ( π : β βΆ β β§ π₯ β β ) β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) } β ( ( π : β βΆ β β§ π₯ β β ) β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) |
11 |
3
|
hlex |
β’ β β V |
12 |
|
nnex |
β’ β β V |
13 |
11 12
|
elmap |
β’ ( π β ( β βm β ) β π : β βΆ β ) |
14 |
13
|
anbi1i |
β’ ( ( π β ( β βm β ) β§ β¨ π , π₯ β© β ( βπ‘ β π½ ) ) β ( π : β βΆ β β§ β¨ π , π₯ β© β ( βπ‘ β π½ ) ) ) |
15 |
|
df-br |
β’ ( π ( βπ‘ β π½ ) π₯ β β¨ π , π₯ β© β ( βπ‘ β π½ ) ) |
16 |
3 4
|
imsxmet |
β’ ( π β NrmCVec β π· β ( βMet β β ) ) |
17 |
2 16
|
mp1i |
β’ ( π : β βΆ β β π· β ( βMet β β ) ) |
18 |
|
nnuz |
β’ β = ( β€β₯ β 1 ) |
19 |
|
1zzd |
β’ ( π : β βΆ β β 1 β β€ ) |
20 |
|
eqidd |
β’ ( ( π : β βΆ β β§ π β β ) β ( π β π ) = ( π β π ) ) |
21 |
|
id |
β’ ( π : β βΆ β β π : β βΆ β ) |
22 |
5 17 18 19 20 21
|
lmmbrf |
β’ ( π : β βΆ β β ( π ( βπ‘ β π½ ) π₯ β ( π₯ β β β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( ( π β π ) π· π₯ ) < π¦ ) ) ) |
23 |
|
eluznn |
β’ ( ( π β β β§ π β ( β€β₯ β π ) ) β π β β ) |
24 |
|
ffvelcdm |
β’ ( ( π : β βΆ β β§ π β β ) β ( π β π ) β β ) |
25 |
1 2 3 4
|
h2hmetdval |
β’ ( ( ( π β π ) β β β§ π₯ β β ) β ( ( π β π ) π· π₯ ) = ( normβ β ( ( π β π ) ββ π₯ ) ) ) |
26 |
24 25
|
sylan |
β’ ( ( ( π : β βΆ β β§ π β β ) β§ π₯ β β ) β ( ( π β π ) π· π₯ ) = ( normβ β ( ( π β π ) ββ π₯ ) ) ) |
27 |
26
|
breq1d |
β’ ( ( ( π : β βΆ β β§ π β β ) β§ π₯ β β ) β ( ( ( π β π ) π· π₯ ) < π¦ β ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) |
28 |
27
|
an32s |
β’ ( ( ( π : β βΆ β β§ π₯ β β ) β§ π β β ) β ( ( ( π β π ) π· π₯ ) < π¦ β ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) |
29 |
23 28
|
sylan2 |
β’ ( ( ( π : β βΆ β β§ π₯ β β ) β§ ( π β β β§ π β ( β€β₯ β π ) ) ) β ( ( ( π β π ) π· π₯ ) < π¦ β ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) |
30 |
29
|
anassrs |
β’ ( ( ( ( π : β βΆ β β§ π₯ β β ) β§ π β β ) β§ π β ( β€β₯ β π ) ) β ( ( ( π β π ) π· π₯ ) < π¦ β ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) |
31 |
30
|
ralbidva |
β’ ( ( ( π : β βΆ β β§ π₯ β β ) β§ π β β ) β ( β π β ( β€β₯ β π ) ( ( π β π ) π· π₯ ) < π¦ β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) |
32 |
31
|
rexbidva |
β’ ( ( π : β βΆ β β§ π₯ β β ) β ( β π β β β π β ( β€β₯ β π ) ( ( π β π ) π· π₯ ) < π¦ β β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) |
33 |
32
|
ralbidv |
β’ ( ( π : β βΆ β β§ π₯ β β ) β ( β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( ( π β π ) π· π₯ ) < π¦ β β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) |
34 |
33
|
pm5.32da |
β’ ( π : β βΆ β β ( ( π₯ β β β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( ( π β π ) π· π₯ ) < π¦ ) β ( π₯ β β β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) ) |
35 |
22 34
|
bitrd |
β’ ( π : β βΆ β β ( π ( βπ‘ β π½ ) π₯ β ( π₯ β β β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) ) |
36 |
15 35
|
bitr3id |
β’ ( π : β βΆ β β ( β¨ π , π₯ β© β ( βπ‘ β π½ ) β ( π₯ β β β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) ) |
37 |
36
|
pm5.32i |
β’ ( ( π : β βΆ β β§ β¨ π , π₯ β© β ( βπ‘ β π½ ) ) β ( π : β βΆ β β§ ( π₯ β β β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) ) |
38 |
14 37
|
bitr2i |
β’ ( ( π : β βΆ β β§ ( π₯ β β β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) β ( π β ( β βm β ) β§ β¨ π , π₯ β© β ( βπ‘ β π½ ) ) ) |
39 |
|
anass |
β’ ( ( ( π : β βΆ β β§ π₯ β β ) β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) β ( π : β βΆ β β§ ( π₯ β β β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) ) ) |
40 |
|
opelres |
β’ ( π₯ β V β ( β¨ π , π₯ β© β ( ( βπ‘ β π½ ) βΎ ( β βm β ) ) β ( π β ( β βm β ) β§ β¨ π , π₯ β© β ( βπ‘ β π½ ) ) ) ) |
41 |
40
|
elv |
β’ ( β¨ π , π₯ β© β ( ( βπ‘ β π½ ) βΎ ( β βm β ) ) β ( π β ( β βm β ) β§ β¨ π , π₯ β© β ( βπ‘ β π½ ) ) ) |
42 |
38 39 41
|
3bitr4i |
β’ ( ( ( π : β βΆ β β§ π₯ β β ) β§ β π¦ β β+ β π β β β π β ( β€β₯ β π ) ( normβ β ( ( π β π ) ββ π₯ ) ) < π¦ ) β β¨ π , π₯ β© β ( ( βπ‘ β π½ ) βΎ ( β βm β ) ) ) |
43 |
9 10 42
|
3bitri |
β’ ( β¨ π , π₯ β© β βπ£ β β¨ π , π₯ β© β ( ( βπ‘ β π½ ) βΎ ( β βm β ) ) ) |
44 |
7 8 43
|
eqrelriiv |
β’ βπ£ = ( ( βπ‘ β π½ ) βΎ ( β βm β ) ) |