Metamath Proof Explorer


Theorem h2hlm

Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 13-May-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022) (New usage is discouraged.)

Ref Expression
Hypotheses h2hl.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
h2hl.2 𝑈 ∈ NrmCVec
h2hl.3 ℋ = ( BaseSet ‘ 𝑈 )
h2hl.4 𝐷 = ( IndMet ‘ 𝑈 )
h2hl.5 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion h2hlm 𝑣 = ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) )

Proof

Step Hyp Ref Expression
1 h2hl.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 h2hl.2 𝑈 ∈ NrmCVec
3 h2hl.3 ℋ = ( BaseSet ‘ 𝑈 )
4 h2hl.4 𝐷 = ( IndMet ‘ 𝑈 )
5 h2hl.5 𝐽 = ( MetOpen ‘ 𝐷 )
6 df-hlim 𝑣 = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) }
7 6 relopabiv Rel ⇝𝑣
8 relres Rel ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) )
9 6 eleq2i ( ⟨ 𝑓 , 𝑥 ⟩ ∈ ⇝𝑣 ↔ ⟨ 𝑓 , 𝑥 ⟩ ∈ { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) } )
10 opabidw ( ⟨ 𝑓 , 𝑥 ⟩ ∈ { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) } ↔ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) )
11 3 hlex ℋ ∈ V
12 nnex ℕ ∈ V
13 11 12 elmap ( 𝑓 ∈ ( ℋ ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ℋ )
14 13 anbi1i ( ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ⇝𝑡𝐽 ) ) ↔ ( 𝑓 : ℕ ⟶ ℋ ∧ ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ⇝𝑡𝐽 ) ) )
15 df-br ( 𝑓 ( ⇝𝑡𝐽 ) 𝑥 ↔ ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ⇝𝑡𝐽 ) )
16 3 4 imsxmet ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ ℋ ) )
17 2 16 mp1i ( 𝑓 : ℕ ⟶ ℋ → 𝐷 ∈ ( ∞Met ‘ ℋ ) )
18 nnuz ℕ = ( ℤ ‘ 1 )
19 1zzd ( 𝑓 : ℕ ⟶ ℋ → 1 ∈ ℤ )
20 eqidd ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) = ( 𝑓𝑘 ) )
21 id ( 𝑓 : ℕ ⟶ ℋ → 𝑓 : ℕ ⟶ ℋ )
22 5 17 18 19 20 21 lmmbrf ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ( ⇝𝑡𝐽 ) 𝑥 ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) 𝐷 𝑥 ) < 𝑦 ) ) )
23 eluznn ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘 ∈ ℕ )
24 ffvelrn ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ ℋ )
25 1 2 3 4 h2hmetdval ( ( ( 𝑓𝑘 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑓𝑘 ) 𝐷 𝑥 ) = ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) )
26 24 25 sylan ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑓𝑘 ) 𝐷 𝑥 ) = ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) )
27 26 breq1d ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑓𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) )
28 27 an32s ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑓𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) )
29 23 28 sylan2 ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( ( 𝑓𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) )
30 29 anassrs ( ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( ( 𝑓𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) )
31 30 ralbidva ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) )
32 31 rexbidva ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) )
33 32 ralbidv ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) )
34 33 pm5.32da ( 𝑓 : ℕ ⟶ ℋ → ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) 𝐷 𝑥 ) < 𝑦 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) ) )
35 22 34 bitrd ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ( ⇝𝑡𝐽 ) 𝑥 ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) ) )
36 15 35 bitr3id ( 𝑓 : ℕ ⟶ ℋ → ( ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ⇝𝑡𝐽 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) ) )
37 36 pm5.32i ( ( 𝑓 : ℕ ⟶ ℋ ∧ ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ⇝𝑡𝐽 ) ) ↔ ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) ) )
38 14 37 bitr2i ( ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ⇝𝑡𝐽 ) ) )
39 anass ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) ↔ ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) ) )
40 opelres ( 𝑥 ∈ V → ( ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ⇝𝑡𝐽 ) ) ) )
41 40 elv ( ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ⇝𝑡𝐽 ) ) )
42 38 39 41 3bitr4i ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑘 ) − 𝑥 ) ) < 𝑦 ) ↔ ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) ) )
43 9 10 42 3bitri ( ⟨ 𝑓 , 𝑥 ⟩ ∈ ⇝𝑣 ↔ ⟨ 𝑓 , 𝑥 ⟩ ∈ ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) ) )
44 7 8 43 eqrelriiv 𝑣 = ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) )