Metamath Proof Explorer


Theorem hsn0elch

Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hsn0elch { 0 } ∈ C

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0 ∈ ℋ
2 snssi ( 0 ∈ ℋ → { 0 } ⊆ ℋ )
3 1 2 ax-mp { 0 } ⊆ ℋ
4 1 elexi 0 ∈ V
5 4 snid 0 ∈ { 0 }
6 3 5 pm3.2i ( { 0 } ⊆ ℋ ∧ 0 ∈ { 0 } )
7 velsn ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
8 velsn ( 𝑦 ∈ { 0 } ↔ 𝑦 = 0 )
9 oveq12 ( ( 𝑥 = 0𝑦 = 0 ) → ( 𝑥 + 𝑦 ) = ( 0 + 0 ) )
10 1 hvaddid2i ( 0 + 0 ) = 0
11 9 10 eqtrdi ( ( 𝑥 = 0𝑦 = 0 ) → ( 𝑥 + 𝑦 ) = 0 )
12 ovex ( 𝑥 + 𝑦 ) ∈ V
13 12 elsn ( ( 𝑥 + 𝑦 ) ∈ { 0 } ↔ ( 𝑥 + 𝑦 ) = 0 )
14 11 13 sylibr ( ( 𝑥 = 0𝑦 = 0 ) → ( 𝑥 + 𝑦 ) ∈ { 0 } )
15 7 8 14 syl2anb ( ( 𝑥 ∈ { 0 } ∧ 𝑦 ∈ { 0 } ) → ( 𝑥 + 𝑦 ) ∈ { 0 } )
16 15 rgen2 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( 𝑥 + 𝑦 ) ∈ { 0 }
17 oveq2 ( 𝑦 = 0 → ( 𝑥 · 𝑦 ) = ( 𝑥 · 0 ) )
18 hvmul0 ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 )
19 17 18 sylan9eqr ( ( 𝑥 ∈ ℂ ∧ 𝑦 = 0 ) → ( 𝑥 · 𝑦 ) = 0 )
20 ovex ( 𝑥 · 𝑦 ) ∈ V
21 20 elsn ( ( 𝑥 · 𝑦 ) ∈ { 0 } ↔ ( 𝑥 · 𝑦 ) = 0 )
22 19 21 sylibr ( ( 𝑥 ∈ ℂ ∧ 𝑦 = 0 ) → ( 𝑥 · 𝑦 ) ∈ { 0 } )
23 8 22 sylan2b ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ { 0 } ) → ( 𝑥 · 𝑦 ) ∈ { 0 } )
24 23 rgen2 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0 } ( 𝑥 · 𝑦 ) ∈ { 0 }
25 16 24 pm3.2i ( ∀ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( 𝑥 + 𝑦 ) ∈ { 0 } ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0 } ( 𝑥 · 𝑦 ) ∈ { 0 } )
26 issh2 ( { 0 } ∈ S ↔ ( ( { 0 } ⊆ ℋ ∧ 0 ∈ { 0 } ) ∧ ( ∀ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( 𝑥 + 𝑦 ) ∈ { 0 } ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0 } ( 𝑥 · 𝑦 ) ∈ { 0 } ) ) )
27 6 25 26 mpbir2an { 0 } ∈ S
28 4 fconst2 ( 𝑓 : ℕ ⟶ { 0 } ↔ 𝑓 = ( ℕ × { 0 } ) )
29 hlim0 ( ℕ × { 0 } ) ⇝𝑣 0
30 breq1 ( 𝑓 = ( ℕ × { 0 } ) → ( 𝑓𝑣 0 ↔ ( ℕ × { 0 } ) ⇝𝑣 0 ) )
31 29 30 mpbiri ( 𝑓 = ( ℕ × { 0 } ) → 𝑓𝑣 0 )
32 28 31 sylbi ( 𝑓 : ℕ ⟶ { 0 } → 𝑓𝑣 0 )
33 hlimuni ( ( 𝑓𝑣 0𝑓𝑣 𝑥 ) → 0 = 𝑥 )
34 33 eleq1d ( ( 𝑓𝑣 0𝑓𝑣 𝑥 ) → ( 0 ∈ { 0 } ↔ 𝑥 ∈ { 0 } ) )
35 32 34 sylan ( ( 𝑓 : ℕ ⟶ { 0 } ∧ 𝑓𝑣 𝑥 ) → ( 0 ∈ { 0 } ↔ 𝑥 ∈ { 0 } ) )
36 5 35 mpbii ( ( 𝑓 : ℕ ⟶ { 0 } ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ { 0 } )
37 36 gen2 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ { 0 } ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ { 0 } )
38 isch2 ( { 0 } ∈ C ↔ ( { 0 } ∈ S ∧ ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ { 0 } ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ { 0 } ) ) )
39 27 37 38 mpbir2an { 0 } ∈ C