Metamath Proof Explorer


Theorem hsn0elch

Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hsn0elch 0 C

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 snssi 0 0
3 1 2 ax-mp 0
4 1 elexi 0 V
5 4 snid 0 0
6 3 5 pm3.2i 0 0 0
7 velsn x 0 x = 0
8 velsn y 0 y = 0
9 oveq12 x = 0 y = 0 x + y = 0 + 0
10 1 hvaddid2i 0 + 0 = 0
11 9 10 eqtrdi x = 0 y = 0 x + y = 0
12 ovex x + y V
13 12 elsn x + y 0 x + y = 0
14 11 13 sylibr x = 0 y = 0 x + y 0
15 7 8 14 syl2anb x 0 y 0 x + y 0
16 15 rgen2 x 0 y 0 x + y 0
17 oveq2 y = 0 x y = x 0
18 hvmul0 x x 0 = 0
19 17 18 sylan9eqr x y = 0 x y = 0
20 ovex x y V
21 20 elsn x y 0 x y = 0
22 19 21 sylibr x y = 0 x y 0
23 8 22 sylan2b x y 0 x y 0
24 23 rgen2 x y 0 x y 0
25 16 24 pm3.2i x 0 y 0 x + y 0 x y 0 x y 0
26 issh2 0 S 0 0 0 x 0 y 0 x + y 0 x y 0 x y 0
27 6 25 26 mpbir2an 0 S
28 4 fconst2 f : 0 f = × 0
29 hlim0 × 0 v 0
30 breq1 f = × 0 f v 0 × 0 v 0
31 29 30 mpbiri f = × 0 f v 0
32 28 31 sylbi f : 0 f v 0
33 hlimuni f v 0 f v x 0 = x
34 33 eleq1d f v 0 f v x 0 0 x 0
35 32 34 sylan f : 0 f v x 0 0 x 0
36 5 35 mpbii f : 0 f v x x 0
37 36 gen2 f x f : 0 f v x x 0
38 isch2 0 C 0 S f x f : 0 f v x x 0
39 27 37 38 mpbir2an 0 C