Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑣 ∈ 𝐴 → 𝑣 ∈ ℝ ) ) |
2 |
1
|
pm4.71rd |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑣 ∈ 𝐴 ↔ ( 𝑣 ∈ ℝ ∧ 𝑣 ∈ 𝐴 ) ) ) |
3 |
2
|
exbidv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑣 𝑣 ∈ 𝐴 ↔ ∃ 𝑣 ( 𝑣 ∈ ℝ ∧ 𝑣 ∈ 𝐴 ) ) ) |
4 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ ℝ 𝑣 ∈ 𝐴 ↔ ∃ 𝑣 ( 𝑣 ∈ ℝ ∧ 𝑣 ∈ 𝐴 ) ) |
5 |
|
renegcl |
⊢ ( 𝑤 ∈ ℝ → - 𝑤 ∈ ℝ ) |
6 |
|
infm3lem |
⊢ ( 𝑣 ∈ ℝ → ∃ 𝑤 ∈ ℝ 𝑣 = - 𝑤 ) |
7 |
|
eleq1 |
⊢ ( 𝑣 = - 𝑤 → ( 𝑣 ∈ 𝐴 ↔ - 𝑤 ∈ 𝐴 ) ) |
8 |
5 6 7
|
rexxfr |
⊢ ( ∃ 𝑣 ∈ ℝ 𝑣 ∈ 𝐴 ↔ ∃ 𝑤 ∈ ℝ - 𝑤 ∈ 𝐴 ) |
9 |
4 8
|
bitr3i |
⊢ ( ∃ 𝑣 ( 𝑣 ∈ ℝ ∧ 𝑣 ∈ 𝐴 ) ↔ ∃ 𝑤 ∈ ℝ - 𝑤 ∈ 𝐴 ) |
10 |
3 9
|
bitrdi |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑣 𝑣 ∈ 𝐴 ↔ ∃ 𝑤 ∈ ℝ - 𝑤 ∈ 𝐴 ) ) |
11 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ 𝐴 ) |
12 |
|
rabn0 |
⊢ ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ↔ ∃ 𝑤 ∈ ℝ - 𝑤 ∈ 𝐴 ) |
13 |
10 11 12
|
3bitr4g |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ≠ ∅ ↔ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ) ) |
14 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
15 |
14
|
pm4.71rd |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
16 |
15
|
imbi1d |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ↔ ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ≤ 𝑦 ) ) ) |
17 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ≤ 𝑦 ) ↔ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ) ) |
18 |
16 17
|
bitrdi |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ↔ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ) ) ) |
19 |
18
|
albidv |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ) ) ) |
20 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ) |
21 |
|
renegcl |
⊢ ( 𝑣 ∈ ℝ → - 𝑣 ∈ ℝ ) |
22 |
|
infm3lem |
⊢ ( 𝑦 ∈ ℝ → ∃ 𝑣 ∈ ℝ 𝑦 = - 𝑣 ) |
23 |
|
eleq1 |
⊢ ( 𝑦 = - 𝑣 → ( 𝑦 ∈ 𝐴 ↔ - 𝑣 ∈ 𝐴 ) ) |
24 |
|
breq2 |
⊢ ( 𝑦 = - 𝑣 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ - 𝑣 ) ) |
25 |
23 24
|
imbi12d |
⊢ ( 𝑦 = - 𝑣 → ( ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ↔ ( - 𝑣 ∈ 𝐴 → 𝑥 ≤ - 𝑣 ) ) ) |
26 |
21 22 25
|
ralxfr |
⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑥 ≤ - 𝑣 ) ) |
27 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ) ) |
28 |
26 27
|
bitr3i |
⊢ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑥 ≤ - 𝑣 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦 ) ) ) |
29 |
19 20 28
|
3bitr4g |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑥 ≤ - 𝑣 ) ) ) |
30 |
29
|
rexbidv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑥 ≤ - 𝑣 ) ) ) |
31 |
|
renegcl |
⊢ ( 𝑢 ∈ ℝ → - 𝑢 ∈ ℝ ) |
32 |
|
infm3lem |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑢 ∈ ℝ 𝑥 = - 𝑢 ) |
33 |
|
breq1 |
⊢ ( 𝑥 = - 𝑢 → ( 𝑥 ≤ - 𝑣 ↔ - 𝑢 ≤ - 𝑣 ) ) |
34 |
33
|
imbi2d |
⊢ ( 𝑥 = - 𝑢 → ( ( - 𝑣 ∈ 𝐴 → 𝑥 ≤ - 𝑣 ) ↔ ( - 𝑣 ∈ 𝐴 → - 𝑢 ≤ - 𝑣 ) ) ) |
35 |
34
|
ralbidv |
⊢ ( 𝑥 = - 𝑢 → ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑥 ≤ - 𝑣 ) ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → - 𝑢 ≤ - 𝑣 ) ) ) |
36 |
31 32 35
|
rexxfr |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑥 ≤ - 𝑣 ) ↔ ∃ 𝑢 ∈ ℝ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → - 𝑢 ≤ - 𝑣 ) ) |
37 |
|
negeq |
⊢ ( 𝑤 = 𝑣 → - 𝑤 = - 𝑣 ) |
38 |
37
|
eleq1d |
⊢ ( 𝑤 = 𝑣 → ( - 𝑤 ∈ 𝐴 ↔ - 𝑣 ∈ 𝐴 ) ) |
39 |
38
|
elrab |
⊢ ( 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ↔ ( 𝑣 ∈ ℝ ∧ - 𝑣 ∈ 𝐴 ) ) |
40 |
39
|
imbi1i |
⊢ ( ( 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } → 𝑣 ≤ 𝑢 ) ↔ ( ( 𝑣 ∈ ℝ ∧ - 𝑣 ∈ 𝐴 ) → 𝑣 ≤ 𝑢 ) ) |
41 |
|
impexp |
⊢ ( ( ( 𝑣 ∈ ℝ ∧ - 𝑣 ∈ 𝐴 ) → 𝑣 ≤ 𝑢 ) ↔ ( 𝑣 ∈ ℝ → ( - 𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢 ) ) ) |
42 |
40 41
|
bitri |
⊢ ( ( 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } → 𝑣 ≤ 𝑢 ) ↔ ( 𝑣 ∈ ℝ → ( - 𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢 ) ) ) |
43 |
42
|
albii |
⊢ ( ∀ 𝑣 ( 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } → 𝑣 ≤ 𝑢 ) ↔ ∀ 𝑣 ( 𝑣 ∈ ℝ → ( - 𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢 ) ) ) |
44 |
|
df-ral |
⊢ ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 ≤ 𝑢 ↔ ∀ 𝑣 ( 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } → 𝑣 ≤ 𝑢 ) ) |
45 |
|
df-ral |
⊢ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢 ) ↔ ∀ 𝑣 ( 𝑣 ∈ ℝ → ( - 𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢 ) ) ) |
46 |
43 44 45
|
3bitr4ri |
⊢ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢 ) ↔ ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 ≤ 𝑢 ) |
47 |
|
leneg |
⊢ ( ( 𝑣 ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑣 ≤ 𝑢 ↔ - 𝑢 ≤ - 𝑣 ) ) |
48 |
47
|
ancoms |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑣 ≤ 𝑢 ↔ - 𝑢 ≤ - 𝑣 ) ) |
49 |
48
|
imbi2d |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( - 𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢 ) ↔ ( - 𝑣 ∈ 𝐴 → - 𝑢 ≤ - 𝑣 ) ) ) |
50 |
49
|
ralbidva |
⊢ ( 𝑢 ∈ ℝ → ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢 ) ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → - 𝑢 ≤ - 𝑣 ) ) ) |
51 |
46 50
|
bitr3id |
⊢ ( 𝑢 ∈ ℝ → ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 ≤ 𝑢 ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → - 𝑢 ≤ - 𝑣 ) ) ) |
52 |
51
|
rexbiia |
⊢ ( ∃ 𝑢 ∈ ℝ ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 ≤ 𝑢 ↔ ∃ 𝑢 ∈ ℝ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → - 𝑢 ≤ - 𝑣 ) ) |
53 |
36 52
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → 𝑥 ≤ - 𝑣 ) ↔ ∃ 𝑢 ∈ ℝ ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 ≤ 𝑢 ) |
54 |
30 53
|
bitrdi |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑢 ∈ ℝ ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 ≤ 𝑢 ) ) |
55 |
13 54
|
anbi12d |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ↔ ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑢 ∈ ℝ ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 ≤ 𝑢 ) ) ) |
56 |
|
ssrab2 |
⊢ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ⊆ ℝ |
57 |
|
sup3 |
⊢ ( ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑢 ∈ ℝ ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 ≤ 𝑢 ) → ∃ 𝑢 ∈ ℝ ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ∧ ∀ 𝑣 ∈ ℝ ( 𝑣 < 𝑢 → ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ) ) ) |
58 |
56 57
|
mp3an1 |
⊢ ( ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑢 ∈ ℝ ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 ≤ 𝑢 ) → ∃ 𝑢 ∈ ℝ ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ∧ ∀ 𝑣 ∈ ℝ ( 𝑣 < 𝑢 → ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ) ) ) |
59 |
55 58
|
syl6bi |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑢 ∈ ℝ ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ∧ ∀ 𝑣 ∈ ℝ ( 𝑣 < 𝑢 → ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ) ) ) ) |
60 |
15
|
imbi1d |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ↔ ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑦 < 𝑥 ) ) ) |
61 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑦 < 𝑥 ) ↔ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) ) |
62 |
60 61
|
bitrdi |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ↔ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) ) ) |
63 |
62
|
albidv |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) ) ) |
64 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) |
65 |
|
breq1 |
⊢ ( 𝑦 = - 𝑣 → ( 𝑦 < 𝑥 ↔ - 𝑣 < 𝑥 ) ) |
66 |
65
|
notbid |
⊢ ( 𝑦 = - 𝑣 → ( ¬ 𝑦 < 𝑥 ↔ ¬ - 𝑣 < 𝑥 ) ) |
67 |
23 66
|
imbi12d |
⊢ ( 𝑦 = - 𝑣 → ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ↔ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ) ) |
68 |
21 22 67
|
ralxfr |
⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ) |
69 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) ) |
70 |
68 69
|
bitr3i |
⊢ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) ) |
71 |
63 64 70
|
3bitr4g |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ) ) |
72 |
|
breq2 |
⊢ ( 𝑦 = - 𝑣 → ( 𝑥 < 𝑦 ↔ 𝑥 < - 𝑣 ) ) |
73 |
|
breq2 |
⊢ ( 𝑦 = - 𝑣 → ( 𝑧 < 𝑦 ↔ 𝑧 < - 𝑣 ) ) |
74 |
73
|
rexbidv |
⊢ ( 𝑦 = - 𝑣 → ( ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 < - 𝑣 ) ) |
75 |
72 74
|
imbi12d |
⊢ ( 𝑦 = - 𝑣 → ( ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( 𝑥 < - 𝑣 → ∃ 𝑧 ∈ 𝐴 𝑧 < - 𝑣 ) ) ) |
76 |
21 22 75
|
ralxfr |
⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑧 ∈ 𝐴 𝑧 < - 𝑣 ) ) |
77 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℝ ) ) |
78 |
77
|
adantrd |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) → 𝑧 ∈ ℝ ) ) |
79 |
78
|
pm4.71rd |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ) ) ) |
80 |
79
|
exbidv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ) ) ) |
81 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐴 𝑧 < - 𝑣 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ) |
82 |
|
renegcl |
⊢ ( 𝑡 ∈ ℝ → - 𝑡 ∈ ℝ ) |
83 |
|
infm3lem |
⊢ ( 𝑧 ∈ ℝ → ∃ 𝑡 ∈ ℝ 𝑧 = - 𝑡 ) |
84 |
|
eleq1 |
⊢ ( 𝑧 = - 𝑡 → ( 𝑧 ∈ 𝐴 ↔ - 𝑡 ∈ 𝐴 ) ) |
85 |
|
breq1 |
⊢ ( 𝑧 = - 𝑡 → ( 𝑧 < - 𝑣 ↔ - 𝑡 < - 𝑣 ) ) |
86 |
84 85
|
anbi12d |
⊢ ( 𝑧 = - 𝑡 → ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ↔ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) |
87 |
82 83 86
|
rexxfr |
⊢ ( ∃ 𝑧 ∈ ℝ ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ↔ ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) |
88 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ℝ ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ) ) |
89 |
87 88
|
bitr3i |
⊢ ( ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 < - 𝑣 ) ) ) |
90 |
80 81 89
|
3bitr4g |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑧 ∈ 𝐴 𝑧 < - 𝑣 ↔ ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) |
91 |
90
|
imbi2d |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑥 < - 𝑣 → ∃ 𝑧 ∈ 𝐴 𝑧 < - 𝑣 ) ↔ ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) |
92 |
91
|
ralbidv |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑧 ∈ 𝐴 𝑧 < - 𝑣 ) ↔ ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) |
93 |
76 92
|
syl5bb |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) |
94 |
71 93
|
anbi12d |
⊢ ( 𝐴 ⊆ ℝ → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ↔ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ∧ ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) ) |
95 |
94
|
rexbidv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ∧ ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) ) |
96 |
|
breq2 |
⊢ ( 𝑥 = - 𝑢 → ( - 𝑣 < 𝑥 ↔ - 𝑣 < - 𝑢 ) ) |
97 |
96
|
notbid |
⊢ ( 𝑥 = - 𝑢 → ( ¬ - 𝑣 < 𝑥 ↔ ¬ - 𝑣 < - 𝑢 ) ) |
98 |
97
|
imbi2d |
⊢ ( 𝑥 = - 𝑢 → ( ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ↔ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < - 𝑢 ) ) ) |
99 |
98
|
ralbidv |
⊢ ( 𝑥 = - 𝑢 → ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < - 𝑢 ) ) ) |
100 |
|
breq1 |
⊢ ( 𝑥 = - 𝑢 → ( 𝑥 < - 𝑣 ↔ - 𝑢 < - 𝑣 ) ) |
101 |
100
|
imbi1d |
⊢ ( 𝑥 = - 𝑢 → ( ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ↔ ( - 𝑢 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) |
102 |
101
|
ralbidv |
⊢ ( 𝑥 = - 𝑢 → ( ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ↔ ∀ 𝑣 ∈ ℝ ( - 𝑢 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) |
103 |
99 102
|
anbi12d |
⊢ ( 𝑥 = - 𝑢 → ( ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ∧ ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ↔ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < - 𝑢 ) ∧ ∀ 𝑣 ∈ ℝ ( - 𝑢 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) ) |
104 |
31 32 103
|
rexxfr |
⊢ ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ∧ ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ↔ ∃ 𝑢 ∈ ℝ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < - 𝑢 ) ∧ ∀ 𝑣 ∈ ℝ ( - 𝑢 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) |
105 |
39
|
imbi1i |
⊢ ( ( 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } → ¬ 𝑢 < 𝑣 ) ↔ ( ( 𝑣 ∈ ℝ ∧ - 𝑣 ∈ 𝐴 ) → ¬ 𝑢 < 𝑣 ) ) |
106 |
|
impexp |
⊢ ( ( ( 𝑣 ∈ ℝ ∧ - 𝑣 ∈ 𝐴 ) → ¬ 𝑢 < 𝑣 ) ↔ ( 𝑣 ∈ ℝ → ( - 𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣 ) ) ) |
107 |
105 106
|
bitri |
⊢ ( ( 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } → ¬ 𝑢 < 𝑣 ) ↔ ( 𝑣 ∈ ℝ → ( - 𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣 ) ) ) |
108 |
107
|
albii |
⊢ ( ∀ 𝑣 ( 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } → ¬ 𝑢 < 𝑣 ) ↔ ∀ 𝑣 ( 𝑣 ∈ ℝ → ( - 𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣 ) ) ) |
109 |
|
df-ral |
⊢ ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ↔ ∀ 𝑣 ( 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } → ¬ 𝑢 < 𝑣 ) ) |
110 |
|
df-ral |
⊢ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣 ) ↔ ∀ 𝑣 ( 𝑣 ∈ ℝ → ( - 𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣 ) ) ) |
111 |
108 109 110
|
3bitr4ri |
⊢ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣 ) ↔ ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ) |
112 |
|
ltneg |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑢 < 𝑣 ↔ - 𝑣 < - 𝑢 ) ) |
113 |
112
|
notbid |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ¬ 𝑢 < 𝑣 ↔ ¬ - 𝑣 < - 𝑢 ) ) |
114 |
113
|
imbi2d |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( - 𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣 ) ↔ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < - 𝑢 ) ) ) |
115 |
114
|
ralbidva |
⊢ ( 𝑢 ∈ ℝ → ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣 ) ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < - 𝑢 ) ) ) |
116 |
111 115
|
bitr3id |
⊢ ( 𝑢 ∈ ℝ → ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ↔ ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < - 𝑢 ) ) ) |
117 |
|
ltneg |
⊢ ( ( 𝑣 ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑣 < 𝑢 ↔ - 𝑢 < - 𝑣 ) ) |
118 |
117
|
ancoms |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑣 < 𝑢 ↔ - 𝑢 < - 𝑣 ) ) |
119 |
|
negeq |
⊢ ( 𝑤 = 𝑡 → - 𝑤 = - 𝑡 ) |
120 |
119
|
eleq1d |
⊢ ( 𝑤 = 𝑡 → ( - 𝑤 ∈ 𝐴 ↔ - 𝑡 ∈ 𝐴 ) ) |
121 |
120
|
rexrab |
⊢ ( ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ↔ ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ 𝑣 < 𝑡 ) ) |
122 |
|
ltneg |
⊢ ( ( 𝑣 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑣 < 𝑡 ↔ - 𝑡 < - 𝑣 ) ) |
123 |
122
|
anbi2d |
⊢ ( ( 𝑣 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( ( - 𝑡 ∈ 𝐴 ∧ 𝑣 < 𝑡 ) ↔ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) |
124 |
123
|
rexbidva |
⊢ ( 𝑣 ∈ ℝ → ( ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ 𝑣 < 𝑡 ) ↔ ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) |
125 |
121 124
|
syl5bb |
⊢ ( 𝑣 ∈ ℝ → ( ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ↔ ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) |
126 |
125
|
adantl |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ↔ ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) |
127 |
118 126
|
imbi12d |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( 𝑣 < 𝑢 → ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ) ↔ ( - 𝑢 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) |
128 |
127
|
ralbidva |
⊢ ( 𝑢 ∈ ℝ → ( ∀ 𝑣 ∈ ℝ ( 𝑣 < 𝑢 → ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ) ↔ ∀ 𝑣 ∈ ℝ ( - 𝑢 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) |
129 |
116 128
|
anbi12d |
⊢ ( 𝑢 ∈ ℝ → ( ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ∧ ∀ 𝑣 ∈ ℝ ( 𝑣 < 𝑢 → ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ) ) ↔ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < - 𝑢 ) ∧ ∀ 𝑣 ∈ ℝ ( - 𝑢 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) ) |
130 |
129
|
rexbiia |
⊢ ( ∃ 𝑢 ∈ ℝ ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ∧ ∀ 𝑣 ∈ ℝ ( 𝑣 < 𝑢 → ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ) ) ↔ ∃ 𝑢 ∈ ℝ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < - 𝑢 ) ∧ ∀ 𝑣 ∈ ℝ ( - 𝑢 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ) |
131 |
104 130
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑣 ∈ ℝ ( - 𝑣 ∈ 𝐴 → ¬ - 𝑣 < 𝑥 ) ∧ ∀ 𝑣 ∈ ℝ ( 𝑥 < - 𝑣 → ∃ 𝑡 ∈ ℝ ( - 𝑡 ∈ 𝐴 ∧ - 𝑡 < - 𝑣 ) ) ) ↔ ∃ 𝑢 ∈ ℝ ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ∧ ∀ 𝑣 ∈ ℝ ( 𝑣 < 𝑢 → ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ) ) ) |
132 |
95 131
|
bitrdi |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ↔ ∃ 𝑢 ∈ ℝ ( ∀ 𝑣 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } ¬ 𝑢 < 𝑣 ∧ ∀ 𝑣 ∈ ℝ ( 𝑣 < 𝑢 → ∃ 𝑡 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ 𝐴 } 𝑣 < 𝑡 ) ) ) ) |
133 |
59 132
|
sylibrd |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
134 |
133
|
3impib |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |