Step |
Hyp |
Ref |
Expression |
1 |
|
infpn2.1 |
⊢ 𝑆 = { 𝑛 ∈ ℕ ∣ ( 1 < 𝑛 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑛 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑛 ) ) ) } |
2 |
1
|
ssrab3 |
⊢ 𝑆 ⊆ ℕ |
3 |
|
infpn |
⊢ ( 𝑗 ∈ ℕ → ∃ 𝑘 ∈ ℕ ( 𝑗 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) |
4 |
|
nnge1 |
⊢ ( 𝑗 ∈ ℕ → 1 ≤ 𝑗 ) |
5 |
4
|
adantr |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑗 ) |
6 |
|
1re |
⊢ 1 ∈ ℝ |
7 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
8 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
9 |
|
lelttr |
⊢ ( ( 1 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 1 ≤ 𝑗 ∧ 𝑗 < 𝑘 ) → 1 < 𝑘 ) ) |
10 |
6 7 8 9
|
mp3an3an |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 1 ≤ 𝑗 ∧ 𝑗 < 𝑘 ) → 1 < 𝑘 ) ) |
11 |
5 10
|
mpand |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑗 < 𝑘 → 1 < 𝑘 ) ) |
12 |
11
|
ancld |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑗 < 𝑘 → ( 𝑗 < 𝑘 ∧ 1 < 𝑘 ) ) ) |
13 |
12
|
anim1d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) → ( ( 𝑗 < 𝑘 ∧ 1 < 𝑘 ) ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) |
14 |
|
anass |
⊢ ( ( ( 𝑗 < 𝑘 ∧ 1 < 𝑘 ) ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ↔ ( 𝑗 < 𝑘 ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) |
15 |
13 14
|
syl6ib |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) → ( 𝑗 < 𝑘 ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) ) |
16 |
15
|
reximdva |
⊢ ( 𝑗 ∈ ℕ → ( ∃ 𝑘 ∈ ℕ ( 𝑗 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) → ∃ 𝑘 ∈ ℕ ( 𝑗 < 𝑘 ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) ) |
17 |
3 16
|
mpd |
⊢ ( 𝑗 ∈ ℕ → ∃ 𝑘 ∈ ℕ ( 𝑗 < 𝑘 ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) |
18 |
|
breq2 |
⊢ ( 𝑛 = 𝑘 → ( 1 < 𝑛 ↔ 1 < 𝑘 ) ) |
19 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 / 𝑚 ) = ( 𝑘 / 𝑚 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 / 𝑚 ) ∈ ℕ ↔ ( 𝑘 / 𝑚 ) ∈ ℕ ) ) |
21 |
|
equequ2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑚 = 𝑛 ↔ 𝑚 = 𝑘 ) ) |
22 |
21
|
orbi2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑚 = 1 ∨ 𝑚 = 𝑛 ) ↔ ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) |
23 |
20 22
|
imbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑛 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑛 ) ) ↔ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑛 = 𝑘 → ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑛 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) |
25 |
18 24
|
anbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( 1 < 𝑛 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑛 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑛 ) ) ) ↔ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) |
26 |
25 1
|
elrab2 |
⊢ ( 𝑘 ∈ 𝑆 ↔ ( 𝑘 ∈ ℕ ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) |
27 |
26
|
anbi1i |
⊢ ( ( 𝑘 ∈ 𝑆 ∧ 𝑗 < 𝑘 ) ↔ ( ( 𝑘 ∈ ℕ ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ∧ 𝑗 < 𝑘 ) ) |
28 |
|
anass |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ∧ 𝑗 < 𝑘 ) ↔ ( 𝑘 ∈ ℕ ∧ ( ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ∧ 𝑗 < 𝑘 ) ) ) |
29 |
|
ancom |
⊢ ( ( ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ∧ 𝑗 < 𝑘 ) ↔ ( 𝑗 < 𝑘 ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) |
30 |
29
|
anbi2i |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ∧ 𝑗 < 𝑘 ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑗 < 𝑘 ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) ) |
31 |
27 28 30
|
3bitri |
⊢ ( ( 𝑘 ∈ 𝑆 ∧ 𝑗 < 𝑘 ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑗 < 𝑘 ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) ) |
32 |
31
|
rexbii2 |
⊢ ( ∃ 𝑘 ∈ 𝑆 𝑗 < 𝑘 ↔ ∃ 𝑘 ∈ ℕ ( 𝑗 < 𝑘 ∧ ( 1 < 𝑘 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑘 / 𝑚 ) ∈ ℕ → ( 𝑚 = 1 ∨ 𝑚 = 𝑘 ) ) ) ) ) |
33 |
17 32
|
sylibr |
⊢ ( 𝑗 ∈ ℕ → ∃ 𝑘 ∈ 𝑆 𝑗 < 𝑘 ) |
34 |
33
|
rgen |
⊢ ∀ 𝑗 ∈ ℕ ∃ 𝑘 ∈ 𝑆 𝑗 < 𝑘 |
35 |
|
unben |
⊢ ( ( 𝑆 ⊆ ℕ ∧ ∀ 𝑗 ∈ ℕ ∃ 𝑘 ∈ 𝑆 𝑗 < 𝑘 ) → 𝑆 ≈ ℕ ) |
36 |
2 34 35
|
mp2an |
⊢ 𝑆 ≈ ℕ |