Metamath Proof Explorer


Theorem infpn2

Description: There exist infinitely many prime numbers: the set of all primes S is unbounded by infpn , so by unben it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005)

Ref Expression
Hypothesis infpn2.1 S = n | 1 < n m n m m = 1 m = n
Assertion infpn2 S

Proof

Step Hyp Ref Expression
1 infpn2.1 S = n | 1 < n m n m m = 1 m = n
2 1 ssrab3 S
3 infpn j k j < k m k m m = 1 m = k
4 nnge1 j 1 j
5 4 adantr j k 1 j
6 1re 1
7 nnre j j
8 nnre k k
9 lelttr 1 j k 1 j j < k 1 < k
10 6 7 8 9 mp3an3an j k 1 j j < k 1 < k
11 5 10 mpand j k j < k 1 < k
12 11 ancld j k j < k j < k 1 < k
13 12 anim1d j k j < k m k m m = 1 m = k j < k 1 < k m k m m = 1 m = k
14 anass j < k 1 < k m k m m = 1 m = k j < k 1 < k m k m m = 1 m = k
15 13 14 syl6ib j k j < k m k m m = 1 m = k j < k 1 < k m k m m = 1 m = k
16 15 reximdva j k j < k m k m m = 1 m = k k j < k 1 < k m k m m = 1 m = k
17 3 16 mpd j k j < k 1 < k m k m m = 1 m = k
18 breq2 n = k 1 < n 1 < k
19 oveq1 n = k n m = k m
20 19 eleq1d n = k n m k m
21 equequ2 n = k m = n m = k
22 21 orbi2d n = k m = 1 m = n m = 1 m = k
23 20 22 imbi12d n = k n m m = 1 m = n k m m = 1 m = k
24 23 ralbidv n = k m n m m = 1 m = n m k m m = 1 m = k
25 18 24 anbi12d n = k 1 < n m n m m = 1 m = n 1 < k m k m m = 1 m = k
26 25 1 elrab2 k S k 1 < k m k m m = 1 m = k
27 26 anbi1i k S j < k k 1 < k m k m m = 1 m = k j < k
28 anass k 1 < k m k m m = 1 m = k j < k k 1 < k m k m m = 1 m = k j < k
29 ancom 1 < k m k m m = 1 m = k j < k j < k 1 < k m k m m = 1 m = k
30 29 anbi2i k 1 < k m k m m = 1 m = k j < k k j < k 1 < k m k m m = 1 m = k
31 27 28 30 3bitri k S j < k k j < k 1 < k m k m m = 1 m = k
32 31 rexbii2 k S j < k k j < k 1 < k m k m m = 1 m = k
33 17 32 sylibr j k S j < k
34 33 rgen j k S j < k
35 unben S j k S j < k S
36 2 34 35 mp2an S