| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ip1i.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
ip1i.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
| 3 |
|
ip1i.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
| 4 |
|
ip1i.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
| 5 |
|
ip1i.9 |
⊢ 𝑈 ∈ CPreHilOLD |
| 6 |
|
ipasslem1.b |
⊢ 𝐵 ∈ 𝑋 |
| 7 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 9 |
5
|
phnvi |
⊢ 𝑈 ∈ NrmCVec |
| 10 |
1 2 3
|
nvdir |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 11 |
9 10
|
mpan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 12 |
8 11
|
mp3an2 |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 13 |
7 12
|
sylan |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 14 |
1 3
|
nvsid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 15 |
9 14
|
mpan |
⊢ ( 𝐴 ∈ 𝑋 → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 17 |
16
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) ) |
| 18 |
13 17
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) ) |
| 20 |
1 4
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 21 |
9 6 20
|
mp3an13 |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 22 |
21
|
mullidd |
⊢ ( 𝐴 ∈ 𝑋 → ( 1 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( 1 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐵 ) ) ) |
| 25 |
1 3
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ) |
| 26 |
9 25
|
mp3an1 |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ) |
| 27 |
7 26
|
sylan |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ) |
| 28 |
1 2 3 4 5
|
ipdiri |
⊢ ( ( ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐵 ) ) ) |
| 29 |
6 28
|
mp3an3 |
⊢ ( ( ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐵 ) ) ) |
| 30 |
27 29
|
sylancom |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐵 ) ) ) |
| 31 |
24 30
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) ) |
| 32 |
19 31
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 33 |
|
oveq1 |
⊢ ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 34 |
32 33
|
sylan9eq |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 35 |
|
adddir |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 36 |
8 35
|
mp3an2 |
⊢ ( ( 𝑘 ∈ ℂ ∧ ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 37 |
7 21 36
|
syl2an |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) → ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 39 |
34 38
|
eqtr4d |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) |
| 40 |
39
|
exp31 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐴 ∈ 𝑋 → ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 41 |
40
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) → ( 𝐴 ∈ 𝑋 → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 42 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
| 43 |
1 42 4
|
dip0l |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 ) |
| 44 |
9 6 43
|
mp2an |
⊢ ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 |
| 45 |
1 3 42
|
nv0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) = ( 0vec ‘ 𝑈 ) ) |
| 46 |
9 45
|
mpan |
⊢ ( 𝐴 ∈ 𝑋 → ( 0 𝑆 𝐴 ) = ( 0vec ‘ 𝑈 ) ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) ) |
| 48 |
21
|
mul02d |
⊢ ( 𝐴 ∈ 𝑋 → ( 0 · ( 𝐴 𝑃 𝐵 ) ) = 0 ) |
| 49 |
44 47 48
|
3eqtr4a |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 0 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 50 |
|
oveq1 |
⊢ ( 𝑗 = 0 → ( 𝑗 𝑆 𝐴 ) = ( 0 𝑆 𝐴 ) ) |
| 51 |
50
|
oveq1d |
⊢ ( 𝑗 = 0 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 52 |
|
oveq1 |
⊢ ( 𝑗 = 0 → ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) = ( 0 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 53 |
51 52
|
eqeq12d |
⊢ ( 𝑗 = 0 → ( ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 0 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 54 |
53
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ) ↔ ( 𝐴 ∈ 𝑋 → ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 0 · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 55 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 𝑆 𝐴 ) = ( 𝑘 𝑆 𝐴 ) ) |
| 56 |
55
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 57 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 58 |
56 57
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 59 |
58
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ) ↔ ( 𝐴 ∈ 𝑋 → ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 60 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 𝑆 𝐴 ) = ( ( 𝑘 + 1 ) 𝑆 𝐴 ) ) |
| 61 |
60
|
oveq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 62 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) |
| 63 |
61 62
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 64 |
63
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ) ↔ ( 𝐴 ∈ 𝑋 → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 65 |
|
oveq1 |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 𝑆 𝐴 ) = ( 𝑁 𝑆 𝐴 ) ) |
| 66 |
65
|
oveq1d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 67 |
|
oveq1 |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 68 |
66 67
|
eqeq12d |
⊢ ( 𝑗 = 𝑁 → ( ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 69 |
68
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ) ↔ ( 𝐴 ∈ 𝑋 → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 70 |
41 49 54 59 64 69
|
nn0indALT |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ 𝑋 → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 71 |
70
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |