Metamath Proof Explorer


Theorem ipasslem1

Description: Lemma for ipassi . Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ipasslem1.b BX
Assertion ipasslem1 N0AXNSAPB=NAPB

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ipasslem1.b BX
7 nn0cn k0k
8 ax-1cn 1
9 5 phnvi UNrmCVec
10 1 2 3 nvdir UNrmCVeck1AXk+1SA=kSAG1SA
11 9 10 mpan k1AXk+1SA=kSAG1SA
12 8 11 mp3an2 kAXk+1SA=kSAG1SA
13 7 12 sylan k0AXk+1SA=kSAG1SA
14 1 3 nvsid UNrmCVecAX1SA=A
15 9 14 mpan AX1SA=A
16 15 adantl k0AX1SA=A
17 16 oveq2d k0AXkSAG1SA=kSAGA
18 13 17 eqtrd k0AXk+1SA=kSAGA
19 18 oveq1d k0AXk+1SAPB=kSAGAPB
20 1 4 dipcl UNrmCVecAXBXAPB
21 9 6 20 mp3an13 AXAPB
22 21 mullidd AX1APB=APB
23 22 adantl k0AX1APB=APB
24 23 oveq2d k0AXkSAPB+1APB=kSAPB+APB
25 1 3 nvscl UNrmCVeckAXkSAX
26 9 25 mp3an1 kAXkSAX
27 7 26 sylan k0AXkSAX
28 1 2 3 4 5 ipdiri kSAXAXBXkSAGAPB=kSAPB+APB
29 6 28 mp3an3 kSAXAXkSAGAPB=kSAPB+APB
30 27 29 sylancom k0AXkSAGAPB=kSAPB+APB
31 24 30 eqtr4d k0AXkSAPB+1APB=kSAGAPB
32 19 31 eqtr4d k0AXk+1SAPB=kSAPB+1APB
33 oveq1 kSAPB=kAPBkSAPB+1APB=kAPB+1APB
34 32 33 sylan9eq k0AXkSAPB=kAPBk+1SAPB=kAPB+1APB
35 adddir k1APBk+1APB=kAPB+1APB
36 8 35 mp3an2 kAPBk+1APB=kAPB+1APB
37 7 21 36 syl2an k0AXk+1APB=kAPB+1APB
38 37 adantr k0AXkSAPB=kAPBk+1APB=kAPB+1APB
39 34 38 eqtr4d k0AXkSAPB=kAPBk+1SAPB=k+1APB
40 39 exp31 k0AXkSAPB=kAPBk+1SAPB=k+1APB
41 40 a2d k0AXkSAPB=kAPBAXk+1SAPB=k+1APB
42 eqid 0vecU=0vecU
43 1 42 4 dip0l UNrmCVecBX0vecUPB=0
44 9 6 43 mp2an 0vecUPB=0
45 1 3 42 nv0 UNrmCVecAX0SA=0vecU
46 9 45 mpan AX0SA=0vecU
47 46 oveq1d AX0SAPB=0vecUPB
48 21 mul02d AX0APB=0
49 44 47 48 3eqtr4a AX0SAPB=0APB
50 oveq1 j=0jSA=0SA
51 50 oveq1d j=0jSAPB=0SAPB
52 oveq1 j=0jAPB=0APB
53 51 52 eqeq12d j=0jSAPB=jAPB0SAPB=0APB
54 53 imbi2d j=0AXjSAPB=jAPBAX0SAPB=0APB
55 oveq1 j=kjSA=kSA
56 55 oveq1d j=kjSAPB=kSAPB
57 oveq1 j=kjAPB=kAPB
58 56 57 eqeq12d j=kjSAPB=jAPBkSAPB=kAPB
59 58 imbi2d j=kAXjSAPB=jAPBAXkSAPB=kAPB
60 oveq1 j=k+1jSA=k+1SA
61 60 oveq1d j=k+1jSAPB=k+1SAPB
62 oveq1 j=k+1jAPB=k+1APB
63 61 62 eqeq12d j=k+1jSAPB=jAPBk+1SAPB=k+1APB
64 63 imbi2d j=k+1AXjSAPB=jAPBAXk+1SAPB=k+1APB
65 oveq1 j=NjSA=NSA
66 65 oveq1d j=NjSAPB=NSAPB
67 oveq1 j=NjAPB=NAPB
68 66 67 eqeq12d j=NjSAPB=jAPBNSAPB=NAPB
69 68 imbi2d j=NAXjSAPB=jAPBAXNSAPB=NAPB
70 41 49 54 59 64 69 nn0indALT N0AXNSAPB=NAPB
71 70 imp N0AXNSAPB=NAPB