Metamath Proof Explorer


Theorem ipasslem1

Description: Lemma for ipassi . Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ipasslem1.b B X
Assertion ipasslem1 N 0 A X N S A P B = N A P B

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ipasslem1.b B X
7 nn0cn k 0 k
8 ax-1cn 1
9 5 phnvi U NrmCVec
10 1 2 3 nvdir U NrmCVec k 1 A X k + 1 S A = k S A G 1 S A
11 9 10 mpan k 1 A X k + 1 S A = k S A G 1 S A
12 8 11 mp3an2 k A X k + 1 S A = k S A G 1 S A
13 7 12 sylan k 0 A X k + 1 S A = k S A G 1 S A
14 1 3 nvsid U NrmCVec A X 1 S A = A
15 9 14 mpan A X 1 S A = A
16 15 adantl k 0 A X 1 S A = A
17 16 oveq2d k 0 A X k S A G 1 S A = k S A G A
18 13 17 eqtrd k 0 A X k + 1 S A = k S A G A
19 18 oveq1d k 0 A X k + 1 S A P B = k S A G A P B
20 1 4 dipcl U NrmCVec A X B X A P B
21 9 6 20 mp3an13 A X A P B
22 21 mulid2d A X 1 A P B = A P B
23 22 adantl k 0 A X 1 A P B = A P B
24 23 oveq2d k 0 A X k S A P B + 1 A P B = k S A P B + A P B
25 1 3 nvscl U NrmCVec k A X k S A X
26 9 25 mp3an1 k A X k S A X
27 7 26 sylan k 0 A X k S A X
28 1 2 3 4 5 ipdiri k S A X A X B X k S A G A P B = k S A P B + A P B
29 6 28 mp3an3 k S A X A X k S A G A P B = k S A P B + A P B
30 27 29 sylancom k 0 A X k S A G A P B = k S A P B + A P B
31 24 30 eqtr4d k 0 A X k S A P B + 1 A P B = k S A G A P B
32 19 31 eqtr4d k 0 A X k + 1 S A P B = k S A P B + 1 A P B
33 oveq1 k S A P B = k A P B k S A P B + 1 A P B = k A P B + 1 A P B
34 32 33 sylan9eq k 0 A X k S A P B = k A P B k + 1 S A P B = k A P B + 1 A P B
35 adddir k 1 A P B k + 1 A P B = k A P B + 1 A P B
36 8 35 mp3an2 k A P B k + 1 A P B = k A P B + 1 A P B
37 7 21 36 syl2an k 0 A X k + 1 A P B = k A P B + 1 A P B
38 37 adantr k 0 A X k S A P B = k A P B k + 1 A P B = k A P B + 1 A P B
39 34 38 eqtr4d k 0 A X k S A P B = k A P B k + 1 S A P B = k + 1 A P B
40 39 exp31 k 0 A X k S A P B = k A P B k + 1 S A P B = k + 1 A P B
41 40 a2d k 0 A X k S A P B = k A P B A X k + 1 S A P B = k + 1 A P B
42 eqid 0 vec U = 0 vec U
43 1 42 4 dip0l U NrmCVec B X 0 vec U P B = 0
44 9 6 43 mp2an 0 vec U P B = 0
45 1 3 42 nv0 U NrmCVec A X 0 S A = 0 vec U
46 9 45 mpan A X 0 S A = 0 vec U
47 46 oveq1d A X 0 S A P B = 0 vec U P B
48 21 mul02d A X 0 A P B = 0
49 44 47 48 3eqtr4a A X 0 S A P B = 0 A P B
50 oveq1 j = 0 j S A = 0 S A
51 50 oveq1d j = 0 j S A P B = 0 S A P B
52 oveq1 j = 0 j A P B = 0 A P B
53 51 52 eqeq12d j = 0 j S A P B = j A P B 0 S A P B = 0 A P B
54 53 imbi2d j = 0 A X j S A P B = j A P B A X 0 S A P B = 0 A P B
55 oveq1 j = k j S A = k S A
56 55 oveq1d j = k j S A P B = k S A P B
57 oveq1 j = k j A P B = k A P B
58 56 57 eqeq12d j = k j S A P B = j A P B k S A P B = k A P B
59 58 imbi2d j = k A X j S A P B = j A P B A X k S A P B = k A P B
60 oveq1 j = k + 1 j S A = k + 1 S A
61 60 oveq1d j = k + 1 j S A P B = k + 1 S A P B
62 oveq1 j = k + 1 j A P B = k + 1 A P B
63 61 62 eqeq12d j = k + 1 j S A P B = j A P B k + 1 S A P B = k + 1 A P B
64 63 imbi2d j = k + 1 A X j S A P B = j A P B A X k + 1 S A P B = k + 1 A P B
65 oveq1 j = N j S A = N S A
66 65 oveq1d j = N j S A P B = N S A P B
67 oveq1 j = N j A P B = N A P B
68 66 67 eqeq12d j = N j S A P B = j A P B N S A P B = N A P B
69 68 imbi2d j = N A X j S A P B = j A P B A X N S A P B = N A P B
70 41 49 54 59 64 69 nn0indALT N 0 A X N S A P B = N A P B
71 70 imp N 0 A X N S A P B = N A P B