Description: Lemma for ipassi . Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ip1i.1 | |
|
ip1i.2 | |
||
ip1i.4 | |
||
ip1i.7 | |
||
ip1i.9 | |
||
ipasslem1.b | |
||
Assertion | ipasslem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.1 | |
|
2 | ip1i.2 | |
|
3 | ip1i.4 | |
|
4 | ip1i.7 | |
|
5 | ip1i.9 | |
|
6 | ipasslem1.b | |
|
7 | nn0cn | |
|
8 | ax-1cn | |
|
9 | 5 | phnvi | |
10 | 1 2 3 | nvdir | |
11 | 9 10 | mpan | |
12 | 8 11 | mp3an2 | |
13 | 7 12 | sylan | |
14 | 1 3 | nvsid | |
15 | 9 14 | mpan | |
16 | 15 | adantl | |
17 | 16 | oveq2d | |
18 | 13 17 | eqtrd | |
19 | 18 | oveq1d | |
20 | 1 4 | dipcl | |
21 | 9 6 20 | mp3an13 | |
22 | 21 | mullidd | |
23 | 22 | adantl | |
24 | 23 | oveq2d | |
25 | 1 3 | nvscl | |
26 | 9 25 | mp3an1 | |
27 | 7 26 | sylan | |
28 | 1 2 3 4 5 | ipdiri | |
29 | 6 28 | mp3an3 | |
30 | 27 29 | sylancom | |
31 | 24 30 | eqtr4d | |
32 | 19 31 | eqtr4d | |
33 | oveq1 | |
|
34 | 32 33 | sylan9eq | |
35 | adddir | |
|
36 | 8 35 | mp3an2 | |
37 | 7 21 36 | syl2an | |
38 | 37 | adantr | |
39 | 34 38 | eqtr4d | |
40 | 39 | exp31 | |
41 | 40 | a2d | |
42 | eqid | |
|
43 | 1 42 4 | dip0l | |
44 | 9 6 43 | mp2an | |
45 | 1 3 42 | nv0 | |
46 | 9 45 | mpan | |
47 | 46 | oveq1d | |
48 | 21 | mul02d | |
49 | 44 47 48 | 3eqtr4a | |
50 | oveq1 | |
|
51 | 50 | oveq1d | |
52 | oveq1 | |
|
53 | 51 52 | eqeq12d | |
54 | 53 | imbi2d | |
55 | oveq1 | |
|
56 | 55 | oveq1d | |
57 | oveq1 | |
|
58 | 56 57 | eqeq12d | |
59 | 58 | imbi2d | |
60 | oveq1 | |
|
61 | 60 | oveq1d | |
62 | oveq1 | |
|
63 | 61 62 | eqeq12d | |
64 | 63 | imbi2d | |
65 | oveq1 | |
|
66 | 65 | oveq1d | |
67 | oveq1 | |
|
68 | 66 67 | eqeq12d | |
69 | 68 | imbi2d | |
70 | 41 49 54 59 64 69 | nn0indALT | |
71 | 70 | imp | |