Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|
2 |
|
ip1i.2 |
|
3 |
|
ip1i.4 |
|
4 |
|
ip1i.7 |
|
5 |
|
ip1i.9 |
|
6 |
|
ipasslem1.b |
|
7 |
|
nn0cn |
|
8 |
7
|
negcld |
|
9 |
5
|
phnvi |
|
10 |
1 4
|
dipcl |
|
11 |
9 6 10
|
mp3an13 |
|
12 |
|
mulcl |
|
13 |
8 11 12
|
syl2an |
|
14 |
1 3
|
nvscl |
|
15 |
9 14
|
mp3an1 |
|
16 |
8 15
|
sylan |
|
17 |
1 4
|
dipcl |
|
18 |
9 6 17
|
mp3an13 |
|
19 |
16 18
|
syl |
|
20 |
|
ax-1cn |
|
21 |
|
mulneg2 |
|
22 |
20 21
|
mpan2 |
|
23 |
|
mulid1 |
|
24 |
23
|
negeqd |
|
25 |
22 24
|
eqtr2d |
|
26 |
25
|
adantr |
|
27 |
26
|
oveq1d |
|
28 |
|
neg1cn |
|
29 |
1 3
|
nvsass |
|
30 |
9 29
|
mpan |
|
31 |
28 30
|
mp3an2 |
|
32 |
27 31
|
eqtrd |
|
33 |
7 32
|
sylan |
|
34 |
33
|
oveq1d |
|
35 |
1 3
|
nvscl |
|
36 |
9 28 35
|
mp3an12 |
|
37 |
1 2 3 4 5 6
|
ipasslem1 |
|
38 |
36 37
|
sylan2 |
|
39 |
34 38
|
eqtrd |
|
40 |
39
|
oveq2d |
|
41 |
1 4
|
dipcl |
|
42 |
9 6 41
|
mp3an13 |
|
43 |
36 42
|
syl |
|
44 |
|
mulcl |
|
45 |
7 43 44
|
syl2an |
|
46 |
13 45
|
negsubd |
|
47 |
|
mulneg1 |
|
48 |
7 43 47
|
syl2an |
|
49 |
48
|
oveq2d |
|
50 |
8
|
adantr |
|
51 |
11
|
adantl |
|
52 |
43
|
adantl |
|
53 |
50 51 52
|
adddid |
|
54 |
1 2 3 4 5
|
ipdiri |
|
55 |
6 54
|
mp3an3 |
|
56 |
36 55
|
mpdan |
|
57 |
|
eqid |
|
58 |
1 2 3 57
|
nvrinv |
|
59 |
9 58
|
mpan |
|
60 |
59
|
oveq1d |
|
61 |
1 57 4
|
dip0l |
|
62 |
9 6 61
|
mp2an |
|
63 |
60 62
|
eqtrdi |
|
64 |
56 63
|
eqtr3d |
|
65 |
64
|
oveq2d |
|
66 |
8
|
mul01d |
|
67 |
65 66
|
sylan9eqr |
|
68 |
53 67
|
eqtr3d |
|
69 |
49 68
|
eqtr3d |
|
70 |
40 46 69
|
3eqtr2d |
|
71 |
13 19 70
|
subeq0d |
|
72 |
71
|
eqcomd |
|