Metamath Proof Explorer


Theorem ipasslem2

Description: Lemma for ipassi . Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ipasslem1.b BX
Assertion ipasslem2 N0AX- NSAPB=- NAPB

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ipasslem1.b BX
7 nn0cn N0N
8 7 negcld N0N
9 5 phnvi UNrmCVec
10 1 4 dipcl UNrmCVecAXBXAPB
11 9 6 10 mp3an13 AXAPB
12 mulcl NAPB- NAPB
13 8 11 12 syl2an N0AX- NAPB
14 1 3 nvscl UNrmCVecNAX- NSAX
15 9 14 mp3an1 NAX- NSAX
16 8 15 sylan N0AX- NSAX
17 1 4 dipcl UNrmCVec- NSAXBX- NSAPB
18 9 6 17 mp3an13 - NSAX- NSAPB
19 16 18 syl N0AX- NSAPB
20 ax-1cn 1
21 mulneg2 N1N-1= N1
22 20 21 mpan2 NN-1= N1
23 mulrid N N1=N
24 23 negeqd N N1=N
25 22 24 eqtr2d NN=N-1
26 25 adantr NAXN=N-1
27 26 oveq1d NAX- NSA=N-1SA
28 neg1cn 1
29 1 3 nvsass UNrmCVecN1AXN-1SA=NS-1SA
30 9 29 mpan N1AXN-1SA=NS-1SA
31 28 30 mp3an2 NAXN-1SA=NS-1SA
32 27 31 eqtrd NAX- NSA=NS-1SA
33 7 32 sylan N0AX- NSA=NS-1SA
34 33 oveq1d N0AX- NSAPB=NS-1SAPB
35 1 3 nvscl UNrmCVec1AX-1SAX
36 9 28 35 mp3an12 AX-1SAX
37 1 2 3 4 5 6 ipasslem1 N0-1SAXNS-1SAPB=N-1SAPB
38 36 37 sylan2 N0AXNS-1SAPB=N-1SAPB
39 34 38 eqtrd N0AX- NSAPB=N-1SAPB
40 39 oveq2d N0AX- NAPB- NSAPB=- NAPBN-1SAPB
41 1 4 dipcl UNrmCVec-1SAXBX-1SAPB
42 9 6 41 mp3an13 -1SAX-1SAPB
43 36 42 syl AX-1SAPB
44 mulcl N-1SAPBN-1SAPB
45 7 43 44 syl2an N0AXN-1SAPB
46 13 45 negsubd N0AX- NAPB+N-1SAPB=- NAPBN-1SAPB
47 mulneg1 N-1SAPB- N-1SAPB=N-1SAPB
48 7 43 47 syl2an N0AX- N-1SAPB=N-1SAPB
49 48 oveq2d N0AX- NAPB+- N-1SAPB=- NAPB+N-1SAPB
50 8 adantr N0AXN
51 11 adantl N0AXAPB
52 43 adantl N0AX-1SAPB
53 50 51 52 adddid N0AX- NAPB+-1SAPB=- NAPB+- N-1SAPB
54 1 2 3 4 5 ipdiri AX-1SAXBXAG-1SAPB=APB+-1SAPB
55 6 54 mp3an3 AX-1SAXAG-1SAPB=APB+-1SAPB
56 36 55 mpdan AXAG-1SAPB=APB+-1SAPB
57 eqid 0vecU=0vecU
58 1 2 3 57 nvrinv UNrmCVecAXAG-1SA=0vecU
59 9 58 mpan AXAG-1SA=0vecU
60 59 oveq1d AXAG-1SAPB=0vecUPB
61 1 57 4 dip0l UNrmCVecBX0vecUPB=0
62 9 6 61 mp2an 0vecUPB=0
63 60 62 eqtrdi AXAG-1SAPB=0
64 56 63 eqtr3d AXAPB+-1SAPB=0
65 64 oveq2d AX- NAPB+-1SAPB=- N0
66 8 mul01d N0- N0=0
67 65 66 sylan9eqr N0AX- NAPB+-1SAPB=0
68 53 67 eqtr3d N0AX- NAPB+- N-1SAPB=0
69 49 68 eqtr3d N0AX- NAPB+N-1SAPB=0
70 40 46 69 3eqtr2d N0AX- NAPB- NSAPB=0
71 13 19 70 subeq0d N0AX- NAPB=- NSAPB
72 71 eqcomd N0AX- NSAPB=- NAPB