| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isf32lem.a |
⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) |
| 2 |
|
isf32lem.b |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
| 3 |
|
isf32lem.c |
⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) |
| 4 |
|
isf32lem.d |
⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } |
| 5 |
|
isf32lem.e |
⊢ 𝐽 = ( 𝑢 ∈ ω ↦ ( ℩ 𝑣 ∈ 𝑆 ( 𝑣 ∩ 𝑆 ) ≈ 𝑢 ) ) |
| 6 |
|
isf32lem.f |
⊢ 𝐾 = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) |
| 7 |
6
|
fveq1i |
⊢ ( 𝐾 ‘ 𝐴 ) = ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) |
| 8 |
4
|
ssrab3 |
⊢ 𝑆 ⊆ ω |
| 9 |
1 2 3 4
|
isf32lem5 |
⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) |
| 10 |
5
|
fin23lem22 |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐽 : ω –1-1-onto→ 𝑆 ) |
| 11 |
8 9 10
|
sylancr |
⊢ ( 𝜑 → 𝐽 : ω –1-1-onto→ 𝑆 ) |
| 12 |
|
f1of |
⊢ ( 𝐽 : ω –1-1-onto→ 𝑆 → 𝐽 : ω ⟶ 𝑆 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐽 : ω ⟶ 𝑆 ) |
| 14 |
|
fvco3 |
⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
| 15 |
13 14
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
| 16 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 ) |
| 17 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
| 18 |
|
suceq |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → suc 𝑤 = suc ( 𝐽 ‘ 𝐴 ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) |
| 20 |
17 19
|
difeq12d |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 21 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) = ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 22 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∈ V |
| 23 |
22
|
difexi |
⊢ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∈ V |
| 24 |
20 21 23
|
fvmpt |
⊢ ( ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 25 |
16 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 26 |
15 25
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 27 |
7 26
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐾 ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → 𝐹 : ω ⟶ 𝒫 𝐺 ) |
| 29 |
8 16
|
sselid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐽 ‘ 𝐴 ) ∈ ω ) |
| 30 |
28 29
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∈ 𝒫 𝐺 ) |
| 31 |
30
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ⊆ 𝐺 ) |
| 32 |
31
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ⊆ 𝐺 ) |
| 33 |
27 32
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐾 ‘ 𝐴 ) ⊆ 𝐺 ) |