Metamath Proof Explorer


Theorem isf32lem8

Description: Lemma for isfin3-2 . K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014)

Ref Expression
Hypotheses isf32lem.a ( 𝜑𝐹 : ω ⟶ 𝒫 𝐺 )
isf32lem.b ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹𝑥 ) )
isf32lem.c ( 𝜑 → ¬ ran 𝐹 ∈ ran 𝐹 )
isf32lem.d 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) }
isf32lem.e 𝐽 = ( 𝑢 ∈ ω ↦ ( 𝑣𝑆 ( 𝑣𝑆 ) ≈ 𝑢 ) )
isf32lem.f 𝐾 = ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 )
Assertion isf32lem8 ( ( 𝜑𝐴 ∈ ω ) → ( 𝐾𝐴 ) ⊆ 𝐺 )

Proof

Step Hyp Ref Expression
1 isf32lem.a ( 𝜑𝐹 : ω ⟶ 𝒫 𝐺 )
2 isf32lem.b ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹𝑥 ) )
3 isf32lem.c ( 𝜑 → ¬ ran 𝐹 ∈ ran 𝐹 )
4 isf32lem.d 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) }
5 isf32lem.e 𝐽 = ( 𝑢 ∈ ω ↦ ( 𝑣𝑆 ( 𝑣𝑆 ) ≈ 𝑢 ) )
6 isf32lem.f 𝐾 = ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 )
7 6 fveq1i ( 𝐾𝐴 ) = ( ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 )
8 4 ssrab3 𝑆 ⊆ ω
9 1 2 3 4 isf32lem5 ( 𝜑 → ¬ 𝑆 ∈ Fin )
10 5 fin23lem22 ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐽 : ω –1-1-onto𝑆 )
11 8 9 10 sylancr ( 𝜑𝐽 : ω –1-1-onto𝑆 )
12 f1of ( 𝐽 : ω –1-1-onto𝑆𝐽 : ω ⟶ 𝑆 )
13 11 12 syl ( 𝜑𝐽 : ω ⟶ 𝑆 )
14 fvco3 ( ( 𝐽 : ω ⟶ 𝑆𝐴 ∈ ω ) → ( ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽𝐴 ) ) )
15 13 14 sylan ( ( 𝜑𝐴 ∈ ω ) → ( ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽𝐴 ) ) )
16 13 ffvelrnda ( ( 𝜑𝐴 ∈ ω ) → ( 𝐽𝐴 ) ∈ 𝑆 )
17 fveq2 ( 𝑤 = ( 𝐽𝐴 ) → ( 𝐹𝑤 ) = ( 𝐹 ‘ ( 𝐽𝐴 ) ) )
18 suceq ( 𝑤 = ( 𝐽𝐴 ) → suc 𝑤 = suc ( 𝐽𝐴 ) )
19 18 fveq2d ( 𝑤 = ( 𝐽𝐴 ) → ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) )
20 17 19 difeq12d ( 𝑤 = ( 𝐽𝐴 ) → ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
21 eqid ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) = ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) )
22 fvex ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∈ V
23 22 difexi ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) ∈ V
24 20 21 23 fvmpt ( ( 𝐽𝐴 ) ∈ 𝑆 → ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
25 16 24 syl ( ( 𝜑𝐴 ∈ ω ) → ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
26 15 25 eqtrd ( ( 𝜑𝐴 ∈ ω ) → ( ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
27 7 26 syl5eq ( ( 𝜑𝐴 ∈ ω ) → ( 𝐾𝐴 ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
28 1 adantr ( ( 𝜑𝐴 ∈ ω ) → 𝐹 : ω ⟶ 𝒫 𝐺 )
29 8 16 sseldi ( ( 𝜑𝐴 ∈ ω ) → ( 𝐽𝐴 ) ∈ ω )
30 28 29 ffvelrnd ( ( 𝜑𝐴 ∈ ω ) → ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∈ 𝒫 𝐺 )
31 30 elpwid ( ( 𝜑𝐴 ∈ ω ) → ( 𝐹 ‘ ( 𝐽𝐴 ) ) ⊆ 𝐺 )
32 31 ssdifssd ( ( 𝜑𝐴 ∈ ω ) → ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) ⊆ 𝐺 )
33 27 32 eqsstrd ( ( 𝜑𝐴 ∈ ω ) → ( 𝐾𝐴 ) ⊆ 𝐺 )