Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
⊢ ( 𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅ ) |
2 |
|
iunconst |
⊢ ( 𝐵 ≠ ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴 ) |
3 |
1 2
|
sylbir |
⊢ ( ¬ 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴 ) |
4 |
|
iun0 |
⊢ ∪ 𝑥 ∈ 𝐵 ∅ = ∅ |
5 |
|
id |
⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) |
6 |
5
|
iuneq2d |
⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = ∪ 𝑥 ∈ 𝐵 ∅ ) |
7 |
4 6 5
|
3eqtr4a |
⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴 ) |
8 |
3 7
|
ja |
⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴 ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) → 𝐴 = ∪ 𝑥 ∈ 𝐵 𝐴 ) |
10 |
9
|
uneq1d |
⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) → ( 𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥 ) = ( ∪ 𝑥 ∈ 𝐵 𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥 ) ) |
11 |
|
uniiun |
⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 |
12 |
11
|
uneq2i |
⊢ ( 𝐴 ∪ ∪ 𝐵 ) = ( 𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥 ) |
13 |
|
iunun |
⊢ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) = ( ∪ 𝑥 ∈ 𝐵 𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥 ) |
14 |
10 12 13
|
3eqtr4g |
⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) → ( 𝐴 ∪ ∪ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) ) |
15 |
|
unieq |
⊢ ( 𝐵 = ∅ → ∪ 𝐵 = ∪ ∅ ) |
16 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
17 |
15 16
|
eqtrdi |
⊢ ( 𝐵 = ∅ → ∪ 𝐵 = ∅ ) |
18 |
17
|
uneq2d |
⊢ ( 𝐵 = ∅ → ( 𝐴 ∪ ∪ 𝐵 ) = ( 𝐴 ∪ ∅ ) ) |
19 |
|
un0 |
⊢ ( 𝐴 ∪ ∅ ) = 𝐴 |
20 |
18 19
|
eqtrdi |
⊢ ( 𝐵 = ∅ → ( 𝐴 ∪ ∪ 𝐵 ) = 𝐴 ) |
21 |
|
iuneq1 |
⊢ ( 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) = ∪ 𝑥 ∈ ∅ ( 𝐴 ∪ 𝑥 ) ) |
22 |
|
0iun |
⊢ ∪ 𝑥 ∈ ∅ ( 𝐴 ∪ 𝑥 ) = ∅ |
23 |
21 22
|
eqtrdi |
⊢ ( 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) = ∅ ) |
24 |
20 23
|
eqeq12d |
⊢ ( 𝐵 = ∅ → ( ( 𝐴 ∪ ∪ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) ↔ 𝐴 = ∅ ) ) |
25 |
24
|
biimpcd |
⊢ ( ( 𝐴 ∪ ∪ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
26 |
14 25
|
impbii |
⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ( 𝐴 ∪ ∪ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) ) |