| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kercvrlsm.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) |
| 2 |
|
kercvrlsm.p |
⊢ ⊕ = ( LSSum ‘ 𝑆 ) |
| 3 |
|
kercvrlsm.z |
⊢ 0 = ( 0g ‘ 𝑇 ) |
| 4 |
|
kercvrlsm.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
| 5 |
|
kercvrlsm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 6 |
|
kercvrlsm.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 7 |
|
kercvrlsm.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) |
| 8 |
|
kercvrlsm.cv |
⊢ ( 𝜑 → ( 𝐹 “ 𝐷 ) = ran 𝐹 ) |
| 9 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
| 10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
| 11 |
4 3 1
|
lmhmkerlss |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐾 ∈ 𝑈 ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ 𝑈 ) |
| 13 |
1 2
|
lsmcl |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝐾 ∈ 𝑈 ∧ 𝐷 ∈ 𝑈 ) → ( 𝐾 ⊕ 𝐷 ) ∈ 𝑈 ) |
| 14 |
10 12 7 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 ⊕ 𝐷 ) ∈ 𝑈 ) |
| 15 |
5 1
|
lssss |
⊢ ( ( 𝐾 ⊕ 𝐷 ) ∈ 𝑈 → ( 𝐾 ⊕ 𝐷 ) ⊆ 𝐵 ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝐾 ⊕ 𝐷 ) ⊆ 𝐵 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 18 |
5 17
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 19 |
6 18
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 20 |
19
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
| 21 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) ∈ ran 𝐹 ) |
| 22 |
20 21
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) ∈ ran 𝐹 ) |
| 23 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 “ 𝐷 ) = ran 𝐹 ) |
| 24 |
22 23
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝐷 ) ) |
| 25 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐹 Fn 𝐵 ) |
| 26 |
5 1
|
lssss |
⊢ ( 𝐷 ∈ 𝑈 → 𝐷 ⊆ 𝐵 ) |
| 27 |
7 26
|
syl |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐵 ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐷 ⊆ 𝐵 ) |
| 29 |
|
fvelimab |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐷 ⊆ 𝐵 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝐷 ) ↔ ∃ 𝑏 ∈ 𝐷 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 30 |
25 28 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝐷 ) ↔ ∃ 𝑏 ∈ 𝐷 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 31 |
24 30
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑏 ∈ 𝐷 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 32 |
|
lmodgrp |
⊢ ( 𝑆 ∈ LMod → 𝑆 ∈ Grp ) |
| 33 |
10 32
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) → 𝑆 ∈ Grp ) |
| 35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) → 𝑎 ∈ 𝐵 ) |
| 36 |
27
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐵 ) |
| 37 |
36
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) → 𝑏 ∈ 𝐵 ) |
| 38 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 39 |
|
eqid |
⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) |
| 40 |
5 38 39
|
grpnpcan |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑏 ) = 𝑎 ) |
| 41 |
34 35 37 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) → ( ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑏 ) = 𝑎 ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑏 ) = 𝑎 ) |
| 43 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → 𝑆 ∈ LMod ) |
| 44 |
5 1
|
lssss |
⊢ ( 𝐾 ∈ 𝑈 → 𝐾 ⊆ 𝐵 ) |
| 45 |
12 44
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝐵 ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → 𝐾 ⊆ 𝐵 ) |
| 47 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → 𝐷 ⊆ 𝐵 ) |
| 48 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 49 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 50 |
6 49
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 52 |
5 3 4 39
|
ghmeqker |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ∈ 𝐾 ) ) |
| 53 |
51 35 37 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ∈ 𝐾 ) ) |
| 54 |
48 53
|
bitrid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ∈ 𝐾 ) ) |
| 55 |
54
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ∈ 𝐾 ) |
| 56 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → 𝑏 ∈ 𝐷 ) |
| 57 |
5 38 2
|
lsmelvalix |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝐾 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ∧ ( ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ∈ 𝐾 ∧ 𝑏 ∈ 𝐷 ) ) → ( ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( 𝐾 ⊕ 𝐷 ) ) |
| 58 |
43 46 47 55 56 57
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝑎 ( -g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( 𝐾 ⊕ 𝐷 ) ) |
| 59 |
42 58
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → 𝑎 ∈ ( 𝐾 ⊕ 𝐷 ) ) |
| 60 |
59
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) → 𝑎 ∈ ( 𝐾 ⊕ 𝐷 ) ) ) |
| 61 |
60
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) → 𝑎 ∈ ( 𝐾 ⊕ 𝐷 ) ) ) |
| 62 |
61
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∃ 𝑏 ∈ 𝐷 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) → 𝑎 ∈ ( 𝐾 ⊕ 𝐷 ) ) ) |
| 63 |
31 62
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ ( 𝐾 ⊕ 𝐷 ) ) |
| 64 |
16 63
|
eqelssd |
⊢ ( 𝜑 → ( 𝐾 ⊕ 𝐷 ) = 𝐵 ) |