Step |
Hyp |
Ref |
Expression |
1 |
|
lautcvr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lautcvr.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
3 |
|
lautcvr.i |
⊢ 𝐼 = ( LAut ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
5 |
1 4 3
|
lautlt |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) |
6 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → 𝐾 ∈ 𝐴 ) |
7 |
|
simplr1 |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → 𝐹 ∈ 𝐼 ) |
8 |
|
simplr2 |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
9 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) |
10 |
1 4 3
|
lautlt |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ↔ ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑤 ) ) ) |
11 |
6 7 8 9 10
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ↔ ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑤 ) ) ) |
12 |
|
simplr3 |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
13 |
1 4 3
|
lautlt |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑤 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑤 ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝐹 ‘ 𝑤 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) |
14 |
6 7 9 12 13
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝐹 ‘ 𝑤 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) |
15 |
11 14
|
anbi12d |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
16 |
1 3
|
lautcl |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝐹 ∈ 𝐼 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
17 |
6 7 9 16
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
18 |
|
breq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ↔ ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑤 ) ) ) |
19 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ 𝑤 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) |
20 |
18 19
|
anbi12d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
21 |
20
|
rspcev |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) |
22 |
21
|
ex |
⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 → ( ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
23 |
17 22
|
syl |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
24 |
15 23
|
sylbid |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
25 |
24
|
rexlimdva |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
26 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝐾 ∈ 𝐴 ) |
27 |
|
simplr1 |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝐹 ∈ 𝐼 ) |
28 |
|
simplr2 |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
29 |
1 3
|
laut1o |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝐹 ∈ 𝐼 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
30 |
26 27 29
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
31 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
32 |
30 31
|
sylancom |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
33 |
1 4 3
|
lautlt |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) ) → ( 𝑋 ( lt ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
34 |
26 27 28 32 33
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑋 ( lt ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
35 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
36 |
30 35
|
sylancom |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
37 |
36
|
breq2d |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ↔ ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ) ) |
38 |
34 37
|
bitr2d |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ↔ 𝑋 ( lt ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
39 |
|
simplr3 |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
40 |
1 4 3
|
lautlt |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) |
41 |
26 27 32 39 40
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑧 ) ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) |
42 |
36
|
breq1d |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ↔ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) |
43 |
41 42
|
bitr2d |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ↔ ( ◡ 𝐹 ‘ 𝑧 ) ( lt ‘ 𝐾 ) 𝑌 ) ) |
44 |
38 43
|
anbi12d |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( 𝑋 ( lt ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑧 ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ( lt ‘ 𝐾 ) 𝑌 ) ) ) |
45 |
|
breq2 |
⊢ ( 𝑤 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ↔ 𝑋 ( lt ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
46 |
|
breq1 |
⊢ ( 𝑤 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝑤 ( lt ‘ 𝐾 ) 𝑌 ↔ ( ◡ 𝐹 ‘ 𝑧 ) ( lt ‘ 𝐾 ) 𝑌 ) ) |
47 |
45 46
|
anbi12d |
⊢ ( 𝑤 = ( ◡ 𝐹 ‘ 𝑧 ) → ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ↔ ( 𝑋 ( lt ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑧 ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ( lt ‘ 𝐾 ) 𝑌 ) ) ) |
48 |
47
|
rspcev |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝐵 ∧ ( 𝑋 ( lt ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑧 ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ( lt ‘ 𝐾 ) 𝑌 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ) |
49 |
48
|
ex |
⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝐵 → ( ( 𝑋 ( lt ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑧 ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ( lt ‘ 𝐾 ) 𝑌 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ) ) |
50 |
32 49
|
syl |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑋 ( lt ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑧 ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ( lt ‘ 𝐾 ) 𝑌 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ) ) |
51 |
44 50
|
sylbid |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ) ) |
52 |
51
|
rexlimdva |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ) ) |
53 |
25 52
|
impbid |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
54 |
53
|
notbid |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ¬ ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
55 |
5 54
|
anbi12d |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑌 ∧ ¬ ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ) ↔ ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
56 |
1 4 2
|
cvrval |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 ( lt ‘ 𝐾 ) 𝑌 ∧ ¬ ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ) ) ) |
57 |
56
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 ( lt ‘ 𝐾 ) 𝑌 ∧ ¬ ∃ 𝑤 ∈ 𝐵 ( 𝑋 ( lt ‘ 𝐾 ) 𝑤 ∧ 𝑤 ( lt ‘ 𝐾 ) 𝑌 ) ) ) ) |
58 |
|
simpl |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐾 ∈ 𝐴 ) |
59 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐹 ∈ 𝐼 ) |
60 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
61 |
1 3
|
lautcl |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝐹 ∈ 𝐼 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
62 |
58 59 60 61
|
syl21anc |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
63 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
64 |
1 3
|
lautcl |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝐹 ∈ 𝐼 ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) |
65 |
58 59 63 64
|
syl21anc |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) |
66 |
1 4 2
|
cvrval |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) 𝐶 ( 𝐹 ‘ 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
67 |
58 62 65 66
|
syl3anc |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑋 ) 𝐶 ( 𝐹 ‘ 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑋 ) ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
68 |
55 57 67
|
3bitr4d |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝐹 ‘ 𝑋 ) 𝐶 ( 𝐹 ‘ 𝑌 ) ) ) |