Step |
Hyp |
Ref |
Expression |
1 |
|
limsupreuzmpt.j |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
limsupreuzmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
limsupreuzmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
limsupreuzmpt.b |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
5 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) |
6 |
1 4
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
7 |
5 2 3 6
|
limsupreuz |
⊢ ( 𝜑 → ( ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ↔ ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ) ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑗 𝑖 ∈ 𝑍 |
9 |
1 8
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
10 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝜑 ) |
11 |
3
|
uztrn2 |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑗 ∈ 𝑍 ) |
12 |
11
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑗 ∈ 𝑍 ) |
13 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) |
15 |
14 4
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) = 𝐵 ) |
16 |
10 12 15
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) = 𝐵 ) |
17 |
16
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝑦 ≤ ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ↔ 𝑦 ≤ 𝐵 ) ) |
18 |
9 17
|
rexbida |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ 𝐵 ) ) |
19 |
18
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ↔ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ 𝐵 ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ 𝐵 ) ) |
21 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≤ 𝐵 ↔ 𝑥 ≤ 𝐵 ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ 𝐵 ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ 𝐵 ) ) |
23 |
22
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ 𝐵 ↔ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ 𝐵 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑘 ) ) |
25 |
24
|
rexeqdv |
⊢ ( 𝑖 = 𝑘 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ 𝐵 ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ 𝐵 ) ) |
26 |
25
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ 𝐵 ↔ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ 𝐵 ) |
27 |
26
|
a1i |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ 𝐵 ↔ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ 𝐵 ) ) |
28 |
23 27
|
bitrd |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ 𝐵 ↔ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ 𝐵 ) ) |
29 |
28
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ 𝐵 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ 𝐵 ) |
30 |
29
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ 𝐵 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ 𝐵 ) ) |
31 |
20 30
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ 𝐵 ) ) |
32 |
15
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
33 |
1 32
|
ralbida |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ 𝑍 ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ↔ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
34 |
33
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
35 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑥 ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) ) |
37 |
36
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) |
38 |
37
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) ) |
39 |
34 38
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) ) |
40 |
31 39
|
anbi12d |
⊢ ( 𝜑 → ( ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ 𝐵 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) ) ) |
41 |
7 40
|
bitrd |
⊢ ( 𝜑 → ( ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ 𝐵 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) ) ) |