| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lubsscl.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
| 2 |
|
lubsscl.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
| 3 |
|
lubsscl.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
| 4 |
|
lubsscl.s |
⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) |
| 5 |
|
lubsscl.x |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ∈ 𝑇 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 7 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 8 |
6 7 3 1 4
|
lubelss |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐾 ) ) |
| 9 |
2 8
|
sstrd |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐾 ) ) |
| 10 |
9 5
|
sseldd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝐾 ∈ Poset ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑆 ∈ dom 𝑈 ) |
| 13 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑆 ) |
| 14 |
6 7 3 11 12 13
|
luble |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) |
| 16 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑈 ‘ 𝑆 ) → ( 𝑦 ( le ‘ 𝐾 ) 𝑧 ↔ ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 17 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) |
| 18 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝑇 ) |
| 19 |
16 17 18
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) |
| 20 |
19
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 21 |
20
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 22 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) ) |
| 23 |
22
|
ralbidv |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) ) |
| 24 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑧 ↔ ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 26 |
25
|
ralbidv |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 27 |
23 26
|
anbi12d |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 28 |
27
|
rspcev |
⊢ ( ( ( 𝑈 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 29 |
10 15 21 28
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 30 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 31 |
6 7 3 30 1
|
lubeldm2 |
⊢ ( 𝜑 → ( 𝑇 ∈ dom 𝑈 ↔ ( 𝑇 ⊆ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 32 |
9 29 31
|
mpbir2and |
⊢ ( 𝜑 → 𝑇 ∈ dom 𝑈 ) |
| 33 |
7 6 3 1 9 10 14 19
|
poslubd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑇 ) = ( 𝑈 ‘ 𝑆 ) ) |
| 34 |
32 33
|
jca |
⊢ ( 𝜑 → ( 𝑇 ∈ dom 𝑈 ∧ ( 𝑈 ‘ 𝑇 ) = ( 𝑈 ‘ 𝑆 ) ) ) |