| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmul.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 2 |
|
mbfmul.2 |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| 3 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 5 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
| 6 |
|
mbff |
⊢ ( 𝐺 ∈ MblFn → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 8 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn dom 𝐺 ) |
| 9 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
| 11 |
|
mbfdm |
⊢ ( 𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol ) |
| 12 |
2 11
|
syl |
⊢ ( 𝜑 → dom 𝐺 ∈ dom vol ) |
| 13 |
|
eqid |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) |
| 14 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 15 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 16 |
5 8 10 12 13 14 15
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 17 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐹 ) |
| 18 |
|
ffvelcdm |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 19 |
4 17 18
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 20 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
| 21 |
|
ffvelcdm |
⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 22 |
7 20 21
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 23 |
19 22
|
remuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) − ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 24 |
23
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) − ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 25 |
|
inmbl |
⊢ ( ( dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol ) → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
| 26 |
10 12 25
|
syl2anc |
⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
| 27 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
| 28 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
| 29 |
19
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 30 |
22
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
| 31 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 32 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 33 |
26 29 30 31 32
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 34 |
19
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 35 |
22
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
| 36 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 38 |
26 34 35 36 37
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 39 |
26 27 28 33 38
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f − ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) − ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 40 |
24 39
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f − ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 41 |
|
inss1 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 |
| 42 |
|
resmpt |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 43 |
41 42
|
ax-mp |
⊢ ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 44 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 |
44 1
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 46 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 47 |
45 26 46
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 48 |
43 47
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 49 |
19
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
| 50 |
48 49
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
| 51 |
50
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 52 |
|
inss2 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 |
| 53 |
|
resmpt |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 54 |
52 53
|
ax-mp |
⊢ ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) |
| 55 |
7
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 56 |
55 2
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
| 57 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 58 |
56 26 57
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 59 |
54 58
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
| 60 |
22
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
| 61 |
59 60
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
| 62 |
61
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 63 |
29
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 64 |
30
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 65 |
51 62 63 64
|
mbfmullem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 66 |
50
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 67 |
61
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 68 |
34
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 69 |
35
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 70 |
66 67 68 69
|
mbfmullem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 71 |
65 70
|
mbfsub |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f − ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ∈ MblFn ) |
| 72 |
40 71
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 73 |
19 22
|
immuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) + ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 74 |
73
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) + ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 75 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
| 76 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
| 77 |
26 29 35 31 37
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 78 |
26 34 30 36 32
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 79 |
26 75 76 77 78
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f + ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) + ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 80 |
74 79
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f + ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 81 |
51 67 63 69
|
mbfmullem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 82 |
66 62 68 64
|
mbfmullem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 83 |
81 82
|
mbfadd |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f + ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ∈ MblFn ) |
| 84 |
80 83
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 85 |
19 22
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 86 |
85
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) ) ) |
| 87 |
72 84 86
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 88 |
16 87
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |