| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfpos.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑥 0 |
| 3 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 4 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 5 |
2 3 4
|
nfbr |
⊢ Ⅎ 𝑥 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 6 |
5 4 2
|
nfif |
⊢ Ⅎ 𝑥 if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) |
| 8 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 9 |
8
|
breq2d |
⊢ ( 𝑦 = 𝑥 → ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ↔ 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 10 |
9 8
|
ifbieq1d |
⊢ ( 𝑦 = 𝑥 → if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) = if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) |
| 11 |
6 7 10
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 14 |
13
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 15 |
12 1 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 16 |
15
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 0 ≤ 𝐵 ) ) |
| 17 |
16 15
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 18 |
17
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 19 |
11 18
|
eqtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 21 |
1
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 23 |
22
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ∈ ℝ ) |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) |
| 25 |
4 24 8
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 26 |
15
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 27 |
25 26
|
eqtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) ) |
| 29 |
28
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ∈ MblFn ) |
| 30 |
23 29
|
mbfpos |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 31 |
20 30
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 32 |
4
|
nfneg |
⊢ Ⅎ 𝑥 - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 33 |
2 3 32
|
nfbr |
⊢ Ⅎ 𝑥 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 34 |
33 32 2
|
nfif |
⊢ Ⅎ 𝑥 if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) |
| 35 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) |
| 36 |
8
|
negeqd |
⊢ ( 𝑦 = 𝑥 → - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 37 |
36
|
breq2d |
⊢ ( 𝑦 = 𝑥 → ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ↔ 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 38 |
37 36
|
ifbieq1d |
⊢ ( 𝑦 = 𝑥 → if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) = if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) |
| 39 |
34 35 38
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) |
| 40 |
15
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = - 𝐵 ) |
| 41 |
40
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 0 ≤ - 𝐵 ) ) |
| 42 |
41 40
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 43 |
42
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) |
| 44 |
39 43
|
eqtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) |
| 46 |
23
|
renegcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) ∧ 𝑦 ∈ 𝐴 ) → - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ∈ ℝ ) |
| 47 |
23 29
|
mbfneg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ∈ MblFn ) |
| 48 |
46 47
|
mbfpos |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 49 |
45 48
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) |
| 50 |
31 49
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) |
| 51 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 52 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ∈ ℝ ) |
| 53 |
52
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ∈ ℝ ) |
| 54 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 55 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 56 |
54 55
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 57 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) |
| 58 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) |
| 59 |
57 58
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ if ( 0 ≤ - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , - ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 60 |
53 56 59
|
mbfposr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑦 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ∈ MblFn ) |
| 61 |
51 60
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 62 |
50 61
|
impbida |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) ) ) |