| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfpos.1 |
|
| 2 |
|
nfcv |
|
| 3 |
|
nfcv |
|
| 4 |
|
nffvmpt1 |
|
| 5 |
2 3 4
|
nfbr |
|
| 6 |
5 4 2
|
nfif |
|
| 7 |
|
nfcv |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
breq2d |
|
| 10 |
9 8
|
ifbieq1d |
|
| 11 |
6 7 10
|
cbvmpt |
|
| 12 |
|
simpr |
|
| 13 |
|
eqid |
|
| 14 |
13
|
fvmpt2 |
|
| 15 |
12 1 14
|
syl2anc |
|
| 16 |
15
|
breq2d |
|
| 17 |
16 15
|
ifbieq1d |
|
| 18 |
17
|
mpteq2dva |
|
| 19 |
11 18
|
eqtrid |
|
| 20 |
19
|
adantr |
|
| 21 |
1
|
fmpttd |
|
| 22 |
21
|
adantr |
|
| 23 |
22
|
ffvelcdmda |
|
| 24 |
|
nfcv |
|
| 25 |
4 24 8
|
cbvmpt |
|
| 26 |
15
|
mpteq2dva |
|
| 27 |
25 26
|
eqtrid |
|
| 28 |
27
|
eleq1d |
|
| 29 |
28
|
biimpar |
|
| 30 |
23 29
|
mbfpos |
|
| 31 |
20 30
|
eqeltrrd |
|
| 32 |
4
|
nfneg |
|
| 33 |
2 3 32
|
nfbr |
|
| 34 |
33 32 2
|
nfif |
|
| 35 |
|
nfcv |
|
| 36 |
8
|
negeqd |
|
| 37 |
36
|
breq2d |
|
| 38 |
37 36
|
ifbieq1d |
|
| 39 |
34 35 38
|
cbvmpt |
|
| 40 |
15
|
negeqd |
|
| 41 |
40
|
breq2d |
|
| 42 |
41 40
|
ifbieq1d |
|
| 43 |
42
|
mpteq2dva |
|
| 44 |
39 43
|
eqtrid |
|
| 45 |
44
|
adantr |
|
| 46 |
23
|
renegcld |
|
| 47 |
23 29
|
mbfneg |
|
| 48 |
46 47
|
mbfpos |
|
| 49 |
45 48
|
eqeltrrd |
|
| 50 |
31 49
|
jca |
|
| 51 |
27
|
adantr |
|
| 52 |
21
|
ffvelcdmda |
|
| 53 |
52
|
adantlr |
|
| 54 |
19
|
adantr |
|
| 55 |
|
simprl |
|
| 56 |
54 55
|
eqeltrd |
|
| 57 |
44
|
adantr |
|
| 58 |
|
simprr |
|
| 59 |
57 58
|
eqeltrd |
|
| 60 |
53 56 59
|
mbfposr |
|
| 61 |
51 60
|
eqeltrrd |
|
| 62 |
50 61
|
impbida |
|