Metamath Proof Explorer


Theorem mdsl1i

Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of MaedaMaeda p. 2. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdsl.1 𝐴C
mdsl.2 𝐵C
Assertion mdsl1i ( ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) ↔ 𝐴 𝑀 𝐵 )

Proof

Step Hyp Ref Expression
1 mdsl.1 𝐴C
2 mdsl.2 𝐵C
3 sseq2 ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( ( 𝐴𝐵 ) ⊆ 𝑥 ↔ ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ) )
4 sseq1 ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 𝐵 ) ↔ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) )
5 3 4 anbi12d ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) ↔ ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) ) )
6 sseq1 ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( 𝑥𝐵 ↔ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) )
7 oveq1 ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( 𝑥 𝐴 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) )
8 7 ineq1d ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) )
9 oveq1 ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( 𝑥 ( 𝐴𝐵 ) ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) )
10 8 9 eqeq12d ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ↔ ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) )
11 6 10 imbi12d ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ↔ ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) ) )
12 5 11 imbi12d ( 𝑥 = ( 𝑦 ( 𝐴𝐵 ) ) → ( ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) ↔ ( ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) ) ) )
13 12 rspccv ( ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C → ( ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) ) ) )
14 impexp ( ( ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) ↔ ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) ) )
15 impexp ( ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) ) ↔ ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C → ( ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) ) ) )
16 14 15 bitr2i ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C → ( ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) ) ) ↔ ( ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) )
17 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
18 1 2 chincli ( 𝐴𝐵 ) ∈ C
19 chlub ( ( 𝑦C ∧ ( 𝐴𝐵 ) ∈ C𝐵C ) → ( ( 𝑦𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐵 ) ↔ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) )
20 18 2 19 mp3an23 ( 𝑦C → ( ( 𝑦𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐵 ) ↔ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) )
21 20 biimpd ( 𝑦C → ( ( 𝑦𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐵 ) → ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) )
22 17 21 mpan2i ( 𝑦C → ( 𝑦𝐵 → ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) )
23 2 1 chub2i 𝐵 ⊆ ( 𝐴 𝐵 )
24 sstr ( ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵𝐵 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) )
25 23 24 mpan2 ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 → ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) )
26 22 25 syl6 ( 𝑦C → ( 𝑦𝐵 → ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) )
27 chub2 ( ( ( 𝐴𝐵 ) ∈ C𝑦C ) → ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) )
28 18 27 mpan ( 𝑦C → ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) )
29 26 28 jctild ( 𝑦C → ( 𝑦𝐵 → ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) ) )
30 chjcl ( ( 𝑦C ∧ ( 𝐴𝐵 ) ∈ C ) → ( 𝑦 ( 𝐴𝐵 ) ) ∈ C )
31 18 30 mpan2 ( 𝑦C → ( 𝑦 ( 𝐴𝐵 ) ) ∈ C )
32 29 31 jctild ( 𝑦C → ( 𝑦𝐵 → ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) ) ) )
33 32 22 jcad ( 𝑦C → ( 𝑦𝐵 → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ) )
34 chjass ( ( 𝑦C ∧ ( 𝐴𝐵 ) ∈ C𝐴C ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) = ( 𝑦 ( ( 𝐴𝐵 ) ∨ 𝐴 ) ) )
35 18 1 34 mp3an23 ( 𝑦C → ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) = ( 𝑦 ( ( 𝐴𝐵 ) ∨ 𝐴 ) ) )
36 18 1 chjcomi ( ( 𝐴𝐵 ) ∨ 𝐴 ) = ( 𝐴 ( 𝐴𝐵 ) )
37 1 2 chabs1i ( 𝐴 ( 𝐴𝐵 ) ) = 𝐴
38 36 37 eqtri ( ( 𝐴𝐵 ) ∨ 𝐴 ) = 𝐴
39 38 oveq2i ( 𝑦 ( ( 𝐴𝐵 ) ∨ 𝐴 ) ) = ( 𝑦 𝐴 )
40 35 39 eqtrdi ( 𝑦C → ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) = ( 𝑦 𝐴 ) )
41 40 ineq1d ( 𝑦C → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 𝐴 ) ∩ 𝐵 ) )
42 chjass ( ( 𝑦C ∧ ( 𝐴𝐵 ) ∈ C ∧ ( 𝐴𝐵 ) ∈ C ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) = ( 𝑦 ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐵 ) ) ) )
43 18 18 42 mp3an23 ( 𝑦C → ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) = ( 𝑦 ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐵 ) ) ) )
44 18 chjidmi ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )
45 44 oveq2i ( 𝑦 ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐵 ) ) ) = ( 𝑦 ( 𝐴𝐵 ) )
46 43 45 eqtrdi ( 𝑦C → ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) = ( 𝑦 ( 𝐴𝐵 ) ) )
47 41 46 eqeq12d ( 𝑦C → ( ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ↔ ( ( 𝑦 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ( 𝐴𝐵 ) ) ) )
48 47 biimpd ( 𝑦C → ( ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) → ( ( 𝑦 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ( 𝐴𝐵 ) ) ) )
49 33 48 imim12d ( 𝑦C → ( ( ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) → ( 𝑦𝐵 → ( ( 𝑦 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ( 𝐴𝐵 ) ) ) ) )
50 16 49 syl5bi ( 𝑦C → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∈ C → ( ( ( 𝐴𝐵 ) ⊆ ( 𝑦 ( 𝐴𝐵 ) ) ∧ ( 𝑦 ( 𝐴𝐵 ) ) ⊆ ( 𝐴 𝐵 ) ) → ( ( 𝑦 ( 𝐴𝐵 ) ) ⊆ 𝐵 → ( ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ 𝐴 ) ∩ 𝐵 ) = ( ( 𝑦 ( 𝐴𝐵 ) ) ∨ ( 𝐴𝐵 ) ) ) ) ) → ( 𝑦𝐵 → ( ( 𝑦 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ( 𝐴𝐵 ) ) ) ) )
51 13 50 syl5com ( ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) → ( 𝑦C → ( 𝑦𝐵 → ( ( 𝑦 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ( 𝐴𝐵 ) ) ) ) )
52 51 ralrimiv ( ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) → ∀ 𝑦C ( 𝑦𝐵 → ( ( 𝑦 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ( 𝐴𝐵 ) ) ) )
53 mdbr ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑦C ( 𝑦𝐵 → ( ( 𝑦 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ( 𝐴𝐵 ) ) ) ) )
54 1 2 53 mp2an ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑦C ( 𝑦𝐵 → ( ( 𝑦 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ( 𝐴𝐵 ) ) ) )
55 52 54 sylibr ( ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) → 𝐴 𝑀 𝐵 )
56 mdbr ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
57 1 2 56 mp2an ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) )
58 ax-1 ( ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) → ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
59 58 ralimi ( ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) → ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
60 57 59 sylbi ( 𝐴 𝑀 𝐵 → ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
61 55 60 impbii ( ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥 ⊆ ( 𝐴 𝐵 ) ) → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) ↔ 𝐴 𝑀 𝐵 )