| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
odcl.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
odid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
| 4 |
|
odid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 5 |
|
mndodconglem.1 |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 6 |
|
mndodconglem.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 7 |
|
mndodconglem.3 |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 8 |
|
mndodconglem.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 9 |
|
mndodconglem.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 10 |
|
mndodconglem.6 |
⊢ ( 𝜑 → 𝑀 < ( 𝑂 ‘ 𝐴 ) ) |
| 11 |
|
mndodconglem.7 |
⊢ ( 𝜑 → 𝑁 < ( 𝑂 ‘ 𝐴 ) ) |
| 12 |
|
mndodconglem.8 |
⊢ ( 𝜑 → ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| 13 |
7
|
nnred |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 14 |
13
|
recnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 15 |
8
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 17 |
9
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 18 |
17
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 19 |
14 16 18
|
addsubassd |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) − 𝑁 ) = ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) |
| 20 |
7
|
nnzd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 21 |
8
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 22 |
20 21
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ∈ ℤ ) |
| 23 |
22
|
zred |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ∈ ℝ ) |
| 24 |
|
nn0addge1 |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ) |
| 25 |
13 8 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ) |
| 26 |
17 13 23 11 25
|
ltletrd |
⊢ ( 𝜑 → 𝑁 < ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ) |
| 27 |
9
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 28 |
|
znnsub |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ∈ ℤ ) → ( 𝑁 < ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ↔ ( ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) − 𝑁 ) ∈ ℕ ) ) |
| 29 |
27 22 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 < ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ↔ ( ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) − 𝑁 ) ∈ ℕ ) ) |
| 30 |
26 29
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) − 𝑁 ) ∈ ℕ ) |
| 31 |
19 30
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ∈ ℕ ) |
| 32 |
14 16 18
|
addsub12d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) = ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) · 𝐴 ) = ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) ) |
| 34 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) = ( ( 𝑁 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 35 |
|
znnsub |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( 𝑁 < ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ ) ) |
| 36 |
27 20 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 < ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ ) ) |
| 37 |
11 36
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ ) |
| 38 |
37
|
nnnn0d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ0 ) |
| 39 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 40 |
1 3 39
|
mulgnn0dir |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑀 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 41 |
5 8 38 6 40
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑀 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 42 |
1 3 39
|
mulgnn0dir |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑁 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 43 |
5 9 38 6 42
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑁 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 44 |
34 41 43
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) ) |
| 45 |
18 14
|
pncan3d |
⊢ ( 𝜑 → ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) |
| 47 |
1 2 3 4
|
odid |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 48 |
6 47
|
syl |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 49 |
46 48
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = 0 ) |
| 50 |
44 49
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = 0 ) |
| 51 |
33 50
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) · 𝐴 ) = 0 ) |
| 52 |
1 2 3 4
|
odlem2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ∈ ℕ ∧ ( ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) ) |
| 53 |
6 31 51 52
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) ) |
| 54 |
|
elfzle2 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) |
| 56 |
21 27
|
zsubcld |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
| 57 |
56
|
zred |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ∈ ℝ ) |
| 58 |
13 57
|
addge01d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑀 − 𝑁 ) ↔ ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) ) |
| 59 |
55 58
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 − 𝑁 ) ) |
| 60 |
15 17
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑀 − 𝑁 ) ↔ 𝑁 ≤ 𝑀 ) ) |
| 61 |
59 60
|
mpbid |
⊢ ( 𝜑 → 𝑁 ≤ 𝑀 ) |
| 62 |
15 17
|
letri3d |
⊢ ( 𝜑 → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 63 |
62
|
biimprd |
⊢ ( 𝜑 → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) → 𝑀 = 𝑁 ) ) |
| 64 |
61 63
|
mpan2d |
⊢ ( 𝜑 → ( 𝑀 ≤ 𝑁 → 𝑀 = 𝑁 ) ) |
| 65 |
64
|
imp |
⊢ ( ( 𝜑 ∧ 𝑀 ≤ 𝑁 ) → 𝑀 = 𝑁 ) |