| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|- X = ( Base ` G ) |
| 2 |
|
odcl.2 |
|- O = ( od ` G ) |
| 3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
| 4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
| 5 |
|
mndodconglem.1 |
|- ( ph -> G e. Mnd ) |
| 6 |
|
mndodconglem.2 |
|- ( ph -> A e. X ) |
| 7 |
|
mndodconglem.3 |
|- ( ph -> ( O ` A ) e. NN ) |
| 8 |
|
mndodconglem.4 |
|- ( ph -> M e. NN0 ) |
| 9 |
|
mndodconglem.5 |
|- ( ph -> N e. NN0 ) |
| 10 |
|
mndodconglem.6 |
|- ( ph -> M < ( O ` A ) ) |
| 11 |
|
mndodconglem.7 |
|- ( ph -> N < ( O ` A ) ) |
| 12 |
|
mndodconglem.8 |
|- ( ph -> ( M .x. A ) = ( N .x. A ) ) |
| 13 |
7
|
nnred |
|- ( ph -> ( O ` A ) e. RR ) |
| 14 |
13
|
recnd |
|- ( ph -> ( O ` A ) e. CC ) |
| 15 |
8
|
nn0red |
|- ( ph -> M e. RR ) |
| 16 |
15
|
recnd |
|- ( ph -> M e. CC ) |
| 17 |
9
|
nn0red |
|- ( ph -> N e. RR ) |
| 18 |
17
|
recnd |
|- ( ph -> N e. CC ) |
| 19 |
14 16 18
|
addsubassd |
|- ( ph -> ( ( ( O ` A ) + M ) - N ) = ( ( O ` A ) + ( M - N ) ) ) |
| 20 |
7
|
nnzd |
|- ( ph -> ( O ` A ) e. ZZ ) |
| 21 |
8
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 22 |
20 21
|
zaddcld |
|- ( ph -> ( ( O ` A ) + M ) e. ZZ ) |
| 23 |
22
|
zred |
|- ( ph -> ( ( O ` A ) + M ) e. RR ) |
| 24 |
|
nn0addge1 |
|- ( ( ( O ` A ) e. RR /\ M e. NN0 ) -> ( O ` A ) <_ ( ( O ` A ) + M ) ) |
| 25 |
13 8 24
|
syl2anc |
|- ( ph -> ( O ` A ) <_ ( ( O ` A ) + M ) ) |
| 26 |
17 13 23 11 25
|
ltletrd |
|- ( ph -> N < ( ( O ` A ) + M ) ) |
| 27 |
9
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 28 |
|
znnsub |
|- ( ( N e. ZZ /\ ( ( O ` A ) + M ) e. ZZ ) -> ( N < ( ( O ` A ) + M ) <-> ( ( ( O ` A ) + M ) - N ) e. NN ) ) |
| 29 |
27 22 28
|
syl2anc |
|- ( ph -> ( N < ( ( O ` A ) + M ) <-> ( ( ( O ` A ) + M ) - N ) e. NN ) ) |
| 30 |
26 29
|
mpbid |
|- ( ph -> ( ( ( O ` A ) + M ) - N ) e. NN ) |
| 31 |
19 30
|
eqeltrrd |
|- ( ph -> ( ( O ` A ) + ( M - N ) ) e. NN ) |
| 32 |
14 16 18
|
addsub12d |
|- ( ph -> ( ( O ` A ) + ( M - N ) ) = ( M + ( ( O ` A ) - N ) ) ) |
| 33 |
32
|
oveq1d |
|- ( ph -> ( ( ( O ` A ) + ( M - N ) ) .x. A ) = ( ( M + ( ( O ` A ) - N ) ) .x. A ) ) |
| 34 |
12
|
oveq1d |
|- ( ph -> ( ( M .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) = ( ( N .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 35 |
|
znnsub |
|- ( ( N e. ZZ /\ ( O ` A ) e. ZZ ) -> ( N < ( O ` A ) <-> ( ( O ` A ) - N ) e. NN ) ) |
| 36 |
27 20 35
|
syl2anc |
|- ( ph -> ( N < ( O ` A ) <-> ( ( O ` A ) - N ) e. NN ) ) |
| 37 |
11 36
|
mpbid |
|- ( ph -> ( ( O ` A ) - N ) e. NN ) |
| 38 |
37
|
nnnn0d |
|- ( ph -> ( ( O ` A ) - N ) e. NN0 ) |
| 39 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 40 |
1 3 39
|
mulgnn0dir |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ ( ( O ` A ) - N ) e. NN0 /\ A e. X ) ) -> ( ( M + ( ( O ` A ) - N ) ) .x. A ) = ( ( M .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 41 |
5 8 38 6 40
|
syl13anc |
|- ( ph -> ( ( M + ( ( O ` A ) - N ) ) .x. A ) = ( ( M .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 42 |
1 3 39
|
mulgnn0dir |
|- ( ( G e. Mnd /\ ( N e. NN0 /\ ( ( O ` A ) - N ) e. NN0 /\ A e. X ) ) -> ( ( N + ( ( O ` A ) - N ) ) .x. A ) = ( ( N .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 43 |
5 9 38 6 42
|
syl13anc |
|- ( ph -> ( ( N + ( ( O ` A ) - N ) ) .x. A ) = ( ( N .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 44 |
34 41 43
|
3eqtr4d |
|- ( ph -> ( ( M + ( ( O ` A ) - N ) ) .x. A ) = ( ( N + ( ( O ` A ) - N ) ) .x. A ) ) |
| 45 |
18 14
|
pncan3d |
|- ( ph -> ( N + ( ( O ` A ) - N ) ) = ( O ` A ) ) |
| 46 |
45
|
oveq1d |
|- ( ph -> ( ( N + ( ( O ` A ) - N ) ) .x. A ) = ( ( O ` A ) .x. A ) ) |
| 47 |
1 2 3 4
|
odid |
|- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |
| 48 |
6 47
|
syl |
|- ( ph -> ( ( O ` A ) .x. A ) = .0. ) |
| 49 |
46 48
|
eqtrd |
|- ( ph -> ( ( N + ( ( O ` A ) - N ) ) .x. A ) = .0. ) |
| 50 |
44 49
|
eqtrd |
|- ( ph -> ( ( M + ( ( O ` A ) - N ) ) .x. A ) = .0. ) |
| 51 |
33 50
|
eqtrd |
|- ( ph -> ( ( ( O ` A ) + ( M - N ) ) .x. A ) = .0. ) |
| 52 |
1 2 3 4
|
odlem2 |
|- ( ( A e. X /\ ( ( O ` A ) + ( M - N ) ) e. NN /\ ( ( ( O ` A ) + ( M - N ) ) .x. A ) = .0. ) -> ( O ` A ) e. ( 1 ... ( ( O ` A ) + ( M - N ) ) ) ) |
| 53 |
6 31 51 52
|
syl3anc |
|- ( ph -> ( O ` A ) e. ( 1 ... ( ( O ` A ) + ( M - N ) ) ) ) |
| 54 |
|
elfzle2 |
|- ( ( O ` A ) e. ( 1 ... ( ( O ` A ) + ( M - N ) ) ) -> ( O ` A ) <_ ( ( O ` A ) + ( M - N ) ) ) |
| 55 |
53 54
|
syl |
|- ( ph -> ( O ` A ) <_ ( ( O ` A ) + ( M - N ) ) ) |
| 56 |
21 27
|
zsubcld |
|- ( ph -> ( M - N ) e. ZZ ) |
| 57 |
56
|
zred |
|- ( ph -> ( M - N ) e. RR ) |
| 58 |
13 57
|
addge01d |
|- ( ph -> ( 0 <_ ( M - N ) <-> ( O ` A ) <_ ( ( O ` A ) + ( M - N ) ) ) ) |
| 59 |
55 58
|
mpbird |
|- ( ph -> 0 <_ ( M - N ) ) |
| 60 |
15 17
|
subge0d |
|- ( ph -> ( 0 <_ ( M - N ) <-> N <_ M ) ) |
| 61 |
59 60
|
mpbid |
|- ( ph -> N <_ M ) |
| 62 |
15 17
|
letri3d |
|- ( ph -> ( M = N <-> ( M <_ N /\ N <_ M ) ) ) |
| 63 |
62
|
biimprd |
|- ( ph -> ( ( M <_ N /\ N <_ M ) -> M = N ) ) |
| 64 |
61 63
|
mpan2d |
|- ( ph -> ( M <_ N -> M = N ) ) |
| 65 |
64
|
imp |
|- ( ( ph /\ M <_ N ) -> M = N ) |