Description: Lemma for mndodcong . (Contributed by Mario Carneiro, 23-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odcl.1 | |
|
odcl.2 | |
||
odid.3 | |
||
odid.4 | |
||
mndodconglem.1 | |
||
mndodconglem.2 | |
||
mndodconglem.3 | |
||
mndodconglem.4 | |
||
mndodconglem.5 | |
||
mndodconglem.6 | |
||
mndodconglem.7 | |
||
mndodconglem.8 | |
||
Assertion | mndodconglem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl.1 | |
|
2 | odcl.2 | |
|
3 | odid.3 | |
|
4 | odid.4 | |
|
5 | mndodconglem.1 | |
|
6 | mndodconglem.2 | |
|
7 | mndodconglem.3 | |
|
8 | mndodconglem.4 | |
|
9 | mndodconglem.5 | |
|
10 | mndodconglem.6 | |
|
11 | mndodconglem.7 | |
|
12 | mndodconglem.8 | |
|
13 | 7 | nnred | |
14 | 13 | recnd | |
15 | 8 | nn0red | |
16 | 15 | recnd | |
17 | 9 | nn0red | |
18 | 17 | recnd | |
19 | 14 16 18 | addsubassd | |
20 | 7 | nnzd | |
21 | 8 | nn0zd | |
22 | 20 21 | zaddcld | |
23 | 22 | zred | |
24 | nn0addge1 | |
|
25 | 13 8 24 | syl2anc | |
26 | 17 13 23 11 25 | ltletrd | |
27 | 9 | nn0zd | |
28 | znnsub | |
|
29 | 27 22 28 | syl2anc | |
30 | 26 29 | mpbid | |
31 | 19 30 | eqeltrrd | |
32 | 14 16 18 | addsub12d | |
33 | 32 | oveq1d | |
34 | 12 | oveq1d | |
35 | znnsub | |
|
36 | 27 20 35 | syl2anc | |
37 | 11 36 | mpbid | |
38 | 37 | nnnn0d | |
39 | eqid | |
|
40 | 1 3 39 | mulgnn0dir | |
41 | 5 8 38 6 40 | syl13anc | |
42 | 1 3 39 | mulgnn0dir | |
43 | 5 9 38 6 42 | syl13anc | |
44 | 34 41 43 | 3eqtr4d | |
45 | 18 14 | pncan3d | |
46 | 45 | oveq1d | |
47 | 1 2 3 4 | odid | |
48 | 6 47 | syl | |
49 | 46 48 | eqtrd | |
50 | 44 49 | eqtrd | |
51 | 33 50 | eqtrd | |
52 | 1 2 3 4 | odlem2 | |
53 | 6 31 51 52 | syl3anc | |
54 | elfzle2 | |
|
55 | 53 54 | syl | |
56 | 21 27 | zsubcld | |
57 | 56 | zred | |
58 | 13 57 | addge01d | |
59 | 55 58 | mpbird | |
60 | 15 17 | subge0d | |
61 | 59 60 | mpbid | |
62 | 15 17 | letri3d | |
63 | 62 | biimprd | |
64 | 61 63 | mpan2d | |
65 | 64 | imp | |