Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|
2 |
|
odcl.2 |
|
3 |
|
odid.3 |
|
4 |
|
odid.4 |
|
5 |
|
mndodconglem.1 |
|
6 |
|
mndodconglem.2 |
|
7 |
|
mndodconglem.3 |
|
8 |
|
mndodconglem.4 |
|
9 |
|
mndodconglem.5 |
|
10 |
|
mndodconglem.6 |
|
11 |
|
mndodconglem.7 |
|
12 |
|
mndodconglem.8 |
|
13 |
7
|
nnred |
|
14 |
13
|
recnd |
|
15 |
8
|
nn0red |
|
16 |
15
|
recnd |
|
17 |
9
|
nn0red |
|
18 |
17
|
recnd |
|
19 |
14 16 18
|
addsubassd |
|
20 |
7
|
nnzd |
|
21 |
8
|
nn0zd |
|
22 |
20 21
|
zaddcld |
|
23 |
22
|
zred |
|
24 |
|
nn0addge1 |
|
25 |
13 8 24
|
syl2anc |
|
26 |
17 13 23 11 25
|
ltletrd |
|
27 |
9
|
nn0zd |
|
28 |
|
znnsub |
|
29 |
27 22 28
|
syl2anc |
|
30 |
26 29
|
mpbid |
|
31 |
19 30
|
eqeltrrd |
|
32 |
14 16 18
|
addsub12d |
|
33 |
32
|
oveq1d |
|
34 |
12
|
oveq1d |
|
35 |
|
znnsub |
|
36 |
27 20 35
|
syl2anc |
|
37 |
11 36
|
mpbid |
|
38 |
37
|
nnnn0d |
|
39 |
|
eqid |
|
40 |
1 3 39
|
mulgnn0dir |
|
41 |
5 8 38 6 40
|
syl13anc |
|
42 |
1 3 39
|
mulgnn0dir |
|
43 |
5 9 38 6 42
|
syl13anc |
|
44 |
34 41 43
|
3eqtr4d |
|
45 |
18 14
|
pncan3d |
|
46 |
45
|
oveq1d |
|
47 |
1 2 3 4
|
odid |
|
48 |
6 47
|
syl |
|
49 |
46 48
|
eqtrd |
|
50 |
44 49
|
eqtrd |
|
51 |
33 50
|
eqtrd |
|
52 |
1 2 3 4
|
odlem2 |
|
53 |
6 31 51 52
|
syl3anc |
|
54 |
|
elfzle2 |
|
55 |
53 54
|
syl |
|
56 |
21 27
|
zsubcld |
|
57 |
56
|
zred |
|
58 |
13 57
|
addge01d |
|
59 |
55 58
|
mpbird |
|
60 |
15 17
|
subge0d |
|
61 |
59 60
|
mpbid |
|
62 |
15 17
|
letri3d |
|
63 |
62
|
biimprd |
|
64 |
61 63
|
mpan2d |
|
65 |
64
|
imp |
|