Metamath Proof Explorer


Theorem mndodconglem

Description: Lemma for mndodcong . (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
odid.3 ·˙=G
odid.4 0˙=0G
mndodconglem.1 φGMnd
mndodconglem.2 φAX
mndodconglem.3 φOA
mndodconglem.4 φM0
mndodconglem.5 φN0
mndodconglem.6 φM<OA
mndodconglem.7 φN<OA
mndodconglem.8 φM·˙A=N·˙A
Assertion mndodconglem φMNM=N

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 odid.3 ·˙=G
4 odid.4 0˙=0G
5 mndodconglem.1 φGMnd
6 mndodconglem.2 φAX
7 mndodconglem.3 φOA
8 mndodconglem.4 φM0
9 mndodconglem.5 φN0
10 mndodconglem.6 φM<OA
11 mndodconglem.7 φN<OA
12 mndodconglem.8 φM·˙A=N·˙A
13 7 nnred φOA
14 13 recnd φOA
15 8 nn0red φM
16 15 recnd φM
17 9 nn0red φN
18 17 recnd φN
19 14 16 18 addsubassd φOA+M-N=OA+M-N
20 7 nnzd φOA
21 8 nn0zd φM
22 20 21 zaddcld φOA+M
23 22 zred φOA+M
24 nn0addge1 OAM0OAOA+M
25 13 8 24 syl2anc φOAOA+M
26 17 13 23 11 25 ltletrd φN<OA+M
27 9 nn0zd φN
28 znnsub NOA+MN<OA+MOA+M-N
29 27 22 28 syl2anc φN<OA+MOA+M-N
30 26 29 mpbid φOA+M-N
31 19 30 eqeltrrd φOA+M-N
32 14 16 18 addsub12d φOA+M-N=M+OA-N
33 32 oveq1d φOA+M-N·˙A=M+OA-N·˙A
34 12 oveq1d φM·˙A+GOAN·˙A=N·˙A+GOAN·˙A
35 znnsub NOAN<OAOAN
36 27 20 35 syl2anc φN<OAOAN
37 11 36 mpbid φOAN
38 37 nnnn0d φOAN0
39 eqid +G=+G
40 1 3 39 mulgnn0dir GMndM0OAN0AXM+OA-N·˙A=M·˙A+GOAN·˙A
41 5 8 38 6 40 syl13anc φM+OA-N·˙A=M·˙A+GOAN·˙A
42 1 3 39 mulgnn0dir GMndN0OAN0AXN+OA-N·˙A=N·˙A+GOAN·˙A
43 5 9 38 6 42 syl13anc φN+OA-N·˙A=N·˙A+GOAN·˙A
44 34 41 43 3eqtr4d φM+OA-N·˙A=N+OA-N·˙A
45 18 14 pncan3d φN+OA-N=OA
46 45 oveq1d φN+OA-N·˙A=OA·˙A
47 1 2 3 4 odid AXOA·˙A=0˙
48 6 47 syl φOA·˙A=0˙
49 46 48 eqtrd φN+OA-N·˙A=0˙
50 44 49 eqtrd φM+OA-N·˙A=0˙
51 33 50 eqtrd φOA+M-N·˙A=0˙
52 1 2 3 4 odlem2 AXOA+M-NOA+M-N·˙A=0˙OA1OA+M-N
53 6 31 51 52 syl3anc φOA1OA+M-N
54 elfzle2 OA1OA+M-NOAOA+M-N
55 53 54 syl φOAOA+M-N
56 21 27 zsubcld φMN
57 56 zred φMN
58 13 57 addge01d φ0MNOAOA+M-N
59 55 58 mpbird φ0MN
60 15 17 subge0d φ0MNNM
61 59 60 mpbid φNM
62 15 17 letri3d φM=NMNNM
63 62 biimprd φMNNMM=N
64 61 63 mpan2d φMNM=N
65 64 imp φMNM=N