Metamath Proof Explorer


Theorem mndodconglem

Description: Lemma for mndodcong . (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odcl.1 X = Base G
odcl.2 O = od G
odid.3 · ˙ = G
odid.4 0 ˙ = 0 G
mndodconglem.1 φ G Mnd
mndodconglem.2 φ A X
mndodconglem.3 φ O A
mndodconglem.4 φ M 0
mndodconglem.5 φ N 0
mndodconglem.6 φ M < O A
mndodconglem.7 φ N < O A
mndodconglem.8 φ M · ˙ A = N · ˙ A
Assertion mndodconglem φ M N M = N

Proof

Step Hyp Ref Expression
1 odcl.1 X = Base G
2 odcl.2 O = od G
3 odid.3 · ˙ = G
4 odid.4 0 ˙ = 0 G
5 mndodconglem.1 φ G Mnd
6 mndodconglem.2 φ A X
7 mndodconglem.3 φ O A
8 mndodconglem.4 φ M 0
9 mndodconglem.5 φ N 0
10 mndodconglem.6 φ M < O A
11 mndodconglem.7 φ N < O A
12 mndodconglem.8 φ M · ˙ A = N · ˙ A
13 7 nnred φ O A
14 13 recnd φ O A
15 8 nn0red φ M
16 15 recnd φ M
17 9 nn0red φ N
18 17 recnd φ N
19 14 16 18 addsubassd φ O A + M - N = O A + M - N
20 7 nnzd φ O A
21 8 nn0zd φ M
22 20 21 zaddcld φ O A + M
23 22 zred φ O A + M
24 nn0addge1 O A M 0 O A O A + M
25 13 8 24 syl2anc φ O A O A + M
26 17 13 23 11 25 ltletrd φ N < O A + M
27 9 nn0zd φ N
28 znnsub N O A + M N < O A + M O A + M - N
29 27 22 28 syl2anc φ N < O A + M O A + M - N
30 26 29 mpbid φ O A + M - N
31 19 30 eqeltrrd φ O A + M - N
32 14 16 18 addsub12d φ O A + M - N = M + O A - N
33 32 oveq1d φ O A + M - N · ˙ A = M + O A - N · ˙ A
34 12 oveq1d φ M · ˙ A + G O A N · ˙ A = N · ˙ A + G O A N · ˙ A
35 znnsub N O A N < O A O A N
36 27 20 35 syl2anc φ N < O A O A N
37 11 36 mpbid φ O A N
38 37 nnnn0d φ O A N 0
39 eqid + G = + G
40 1 3 39 mulgnn0dir G Mnd M 0 O A N 0 A X M + O A - N · ˙ A = M · ˙ A + G O A N · ˙ A
41 5 8 38 6 40 syl13anc φ M + O A - N · ˙ A = M · ˙ A + G O A N · ˙ A
42 1 3 39 mulgnn0dir G Mnd N 0 O A N 0 A X N + O A - N · ˙ A = N · ˙ A + G O A N · ˙ A
43 5 9 38 6 42 syl13anc φ N + O A - N · ˙ A = N · ˙ A + G O A N · ˙ A
44 34 41 43 3eqtr4d φ M + O A - N · ˙ A = N + O A - N · ˙ A
45 18 14 pncan3d φ N + O A - N = O A
46 45 oveq1d φ N + O A - N · ˙ A = O A · ˙ A
47 1 2 3 4 odid A X O A · ˙ A = 0 ˙
48 6 47 syl φ O A · ˙ A = 0 ˙
49 46 48 eqtrd φ N + O A - N · ˙ A = 0 ˙
50 44 49 eqtrd φ M + O A - N · ˙ A = 0 ˙
51 33 50 eqtrd φ O A + M - N · ˙ A = 0 ˙
52 1 2 3 4 odlem2 A X O A + M - N O A + M - N · ˙ A = 0 ˙ O A 1 O A + M - N
53 6 31 51 52 syl3anc φ O A 1 O A + M - N
54 elfzle2 O A 1 O A + M - N O A O A + M - N
55 53 54 syl φ O A O A + M - N
56 21 27 zsubcld φ M N
57 56 zred φ M N
58 13 57 addge01d φ 0 M N O A O A + M - N
59 55 58 mpbird φ 0 M N
60 15 17 subge0d φ 0 M N N M
61 59 60 mpbid φ N M
62 15 17 letri3d φ M = N M N N M
63 62 biimprd φ M N N M M = N
64 61 63 mpan2d φ M N M = N
65 64 imp φ M N M = N