| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onssi.1 | ⊢ 𝐴  ∈  On | 
						
							| 2 | 1 | onirri | ⊢ ¬  𝐴  ∈  𝐴 | 
						
							| 3 |  | id | ⊢ ( 𝐴  =  ∪  𝐴  →  𝐴  =  ∪  𝐴 ) | 
						
							| 4 |  | df-suc | ⊢ suc  𝑥  =  ( 𝑥  ∪  { 𝑥 } ) | 
						
							| 5 | 4 | eqeq2i | ⊢ ( 𝐴  =  suc  𝑥  ↔  𝐴  =  ( 𝑥  ∪  { 𝑥 } ) ) | 
						
							| 6 |  | unieq | ⊢ ( 𝐴  =  ( 𝑥  ∪  { 𝑥 } )  →  ∪  𝐴  =  ∪  ( 𝑥  ∪  { 𝑥 } ) ) | 
						
							| 7 | 5 6 | sylbi | ⊢ ( 𝐴  =  suc  𝑥  →  ∪  𝐴  =  ∪  ( 𝑥  ∪  { 𝑥 } ) ) | 
						
							| 8 |  | uniun | ⊢ ∪  ( 𝑥  ∪  { 𝑥 } )  =  ( ∪  𝑥  ∪  ∪  { 𝑥 } ) | 
						
							| 9 |  | unisnv | ⊢ ∪  { 𝑥 }  =  𝑥 | 
						
							| 10 | 9 | uneq2i | ⊢ ( ∪  𝑥  ∪  ∪  { 𝑥 } )  =  ( ∪  𝑥  ∪  𝑥 ) | 
						
							| 11 | 8 10 | eqtri | ⊢ ∪  ( 𝑥  ∪  { 𝑥 } )  =  ( ∪  𝑥  ∪  𝑥 ) | 
						
							| 12 | 7 11 | eqtrdi | ⊢ ( 𝐴  =  suc  𝑥  →  ∪  𝐴  =  ( ∪  𝑥  ∪  𝑥 ) ) | 
						
							| 13 |  | tron | ⊢ Tr  On | 
						
							| 14 |  | eleq1 | ⊢ ( 𝐴  =  suc  𝑥  →  ( 𝐴  ∈  On  ↔  suc  𝑥  ∈  On ) ) | 
						
							| 15 | 1 14 | mpbii | ⊢ ( 𝐴  =  suc  𝑥  →  suc  𝑥  ∈  On ) | 
						
							| 16 |  | trsuc | ⊢ ( ( Tr  On  ∧  suc  𝑥  ∈  On )  →  𝑥  ∈  On ) | 
						
							| 17 | 13 15 16 | sylancr | ⊢ ( 𝐴  =  suc  𝑥  →  𝑥  ∈  On ) | 
						
							| 18 |  | ontr | ⊢ ( 𝑥  ∈  On  →  Tr  𝑥 ) | 
						
							| 19 |  | df-tr | ⊢ ( Tr  𝑥  ↔  ∪  𝑥  ⊆  𝑥 ) | 
						
							| 20 | 18 19 | sylib | ⊢ ( 𝑥  ∈  On  →  ∪  𝑥  ⊆  𝑥 ) | 
						
							| 21 | 17 20 | syl | ⊢ ( 𝐴  =  suc  𝑥  →  ∪  𝑥  ⊆  𝑥 ) | 
						
							| 22 |  | ssequn1 | ⊢ ( ∪  𝑥  ⊆  𝑥  ↔  ( ∪  𝑥  ∪  𝑥 )  =  𝑥 ) | 
						
							| 23 | 21 22 | sylib | ⊢ ( 𝐴  =  suc  𝑥  →  ( ∪  𝑥  ∪  𝑥 )  =  𝑥 ) | 
						
							| 24 | 12 23 | eqtrd | ⊢ ( 𝐴  =  suc  𝑥  →  ∪  𝐴  =  𝑥 ) | 
						
							| 25 | 3 24 | sylan9eqr | ⊢ ( ( 𝐴  =  suc  𝑥  ∧  𝐴  =  ∪  𝐴 )  →  𝐴  =  𝑥 ) | 
						
							| 26 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 27 | 26 | sucid | ⊢ 𝑥  ∈  suc  𝑥 | 
						
							| 28 |  | eleq2 | ⊢ ( 𝐴  =  suc  𝑥  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  suc  𝑥 ) ) | 
						
							| 29 | 27 28 | mpbiri | ⊢ ( 𝐴  =  suc  𝑥  →  𝑥  ∈  𝐴 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝐴  =  suc  𝑥  ∧  𝐴  =  ∪  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 31 | 25 30 | eqeltrd | ⊢ ( ( 𝐴  =  suc  𝑥  ∧  𝐴  =  ∪  𝐴 )  →  𝐴  ∈  𝐴 ) | 
						
							| 32 | 2 31 | mto | ⊢ ¬  ( 𝐴  =  suc  𝑥  ∧  𝐴  =  ∪  𝐴 ) | 
						
							| 33 | 32 | imnani | ⊢ ( 𝐴  =  suc  𝑥  →  ¬  𝐴  =  ∪  𝐴 ) | 
						
							| 34 | 33 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥  →  ¬  𝐴  =  ∪  𝐴 ) | 
						
							| 35 |  | onuni | ⊢ ( 𝐴  ∈  On  →  ∪  𝐴  ∈  On ) | 
						
							| 36 | 1 35 | ax-mp | ⊢ ∪  𝐴  ∈  On | 
						
							| 37 |  | onuniorsuc | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  =  ∪  𝐴  ∨  𝐴  =  suc  ∪  𝐴 ) ) | 
						
							| 38 | 1 37 | ax-mp | ⊢ ( 𝐴  =  ∪  𝐴  ∨  𝐴  =  suc  ∪  𝐴 ) | 
						
							| 39 | 38 | ori | ⊢ ( ¬  𝐴  =  ∪  𝐴  →  𝐴  =  suc  ∪  𝐴 ) | 
						
							| 40 |  | suceq | ⊢ ( 𝑥  =  ∪  𝐴  →  suc  𝑥  =  suc  ∪  𝐴 ) | 
						
							| 41 | 40 | rspceeqv | ⊢ ( ( ∪  𝐴  ∈  On  ∧  𝐴  =  suc  ∪  𝐴 )  →  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 ) | 
						
							| 42 | 36 39 41 | sylancr | ⊢ ( ¬  𝐴  =  ∪  𝐴  →  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 ) | 
						
							| 43 | 34 42 | impbii | ⊢ ( ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥  ↔  ¬  𝐴  =  ∪  𝐴 ) | 
						
							| 44 | 43 | con2bii | ⊢ ( 𝐴  =  ∪  𝐴  ↔  ¬  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥 ) |