Step |
Hyp |
Ref |
Expression |
1 |
|
df-iun |
⊢ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) } |
2 |
1
|
eleq2i |
⊢ ( ⟨ 𝐶 , 𝑦 ⟩ ∈ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ↔ ⟨ 𝐶 , 𝑦 ⟩ ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) } ) |
3 |
|
opex |
⊢ ⟨ 𝐶 , 𝑦 ⟩ ∈ V |
4 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) ) |
5 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) |
6 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 |
7 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐴 |
8 |
|
nfcv |
⊢ Ⅎ 𝑦 { 𝑧 } |
9 |
7 8
|
nfxp |
⊢ Ⅎ 𝑦 ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) |
10 |
9
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) |
11 |
6 10
|
nfan |
⊢ Ⅎ 𝑦 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) |
12 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ) |
13 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) |
14 |
|
sneq |
⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) |
15 |
13 14
|
xpeq12d |
⊢ ( 𝑦 = 𝑧 → ( 𝐴 × { 𝑦 } ) = ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
17 |
12 16
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
18 |
5 11 17
|
cbvexv1 |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
19 |
4 18
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
20 |
|
eleq1 |
⊢ ( 𝑥 = ⟨ 𝐶 , 𝑦 ⟩ → ( 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ↔ ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝑥 = ⟨ 𝐶 , 𝑦 ⟩ → ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
22 |
21
|
exbidv |
⊢ ( 𝑥 = ⟨ 𝐶 , 𝑦 ⟩ → ( ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
23 |
19 22
|
syl5bb |
⊢ ( 𝑥 = ⟨ 𝐶 , 𝑦 ⟩ → ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
24 |
3 23
|
elab |
⊢ ( ⟨ 𝐶 , 𝑦 ⟩ ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) } ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
25 |
|
opelxp |
⊢ ( ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ↔ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) |
26 |
25
|
anbi2i |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) ) |
27 |
|
an13 |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) ↔ ( 𝑦 ∈ { 𝑧 } ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ) ) |
28 |
|
ancom |
⊢ ( ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) |
29 |
28
|
anbi2i |
⊢ ( ( 𝑦 ∈ { 𝑧 } ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑦 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
30 |
27 29
|
bitri |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) ↔ ( 𝑦 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
31 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) |
32 |
|
equcom |
⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) |
33 |
31 32
|
bitri |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑧 = 𝑦 ) |
34 |
33
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ↔ ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
35 |
26 30 34
|
3bitri |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
36 |
35
|
exbii |
⊢ ( ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ∃ 𝑧 ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
37 |
|
sbequ12r |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
38 |
13
|
equcoms |
⊢ ( 𝑧 = 𝑦 → 𝐴 = ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) |
39 |
38
|
eqcomd |
⊢ ( 𝑧 = 𝑦 → ⦋ 𝑧 / 𝑦 ⦌ 𝐴 = 𝐴 ) |
40 |
39
|
eleq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
41 |
37 40
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) ) |
42 |
41
|
equsexvw |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |
43 |
36 42
|
bitri |
⊢ ( ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ⟨ 𝐶 , 𝑦 ⟩ ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |
44 |
2 24 43
|
3bitri |
⊢ ( ⟨ 𝐶 , 𝑦 ⟩ ∈ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |