| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-iun |
⊢ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) } |
| 2 |
1
|
eleq2i |
⊢ ( 〈 𝐶 , 𝑦 〉 ∈ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ↔ 〈 𝐶 , 𝑦 〉 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) } ) |
| 3 |
|
opex |
⊢ 〈 𝐶 , 𝑦 〉 ∈ V |
| 4 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) |
| 6 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 |
| 7 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐴 |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑦 { 𝑧 } |
| 9 |
7 8
|
nfxp |
⊢ Ⅎ 𝑦 ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) |
| 10 |
9
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) |
| 11 |
6 10
|
nfan |
⊢ Ⅎ 𝑦 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) |
| 12 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ) |
| 13 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) |
| 14 |
|
sneq |
⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) |
| 15 |
13 14
|
xpeq12d |
⊢ ( 𝑦 = 𝑧 → ( 𝐴 × { 𝑦 } ) = ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) |
| 16 |
15
|
eleq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
| 17 |
12 16
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
| 18 |
5 11 17
|
cbvexv1 |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
| 19 |
4 18
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
| 20 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝐶 , 𝑦 〉 → ( 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ↔ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
| 21 |
20
|
anbi2d |
⊢ ( 𝑥 = 〈 𝐶 , 𝑦 〉 → ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
| 22 |
21
|
exbidv |
⊢ ( 𝑥 = 〈 𝐶 , 𝑦 〉 → ( ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
| 23 |
19 22
|
bitrid |
⊢ ( 𝑥 = 〈 𝐶 , 𝑦 〉 → ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
| 24 |
3 23
|
elab |
⊢ ( 〈 𝐶 , 𝑦 〉 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) } ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
| 25 |
|
opelxp |
⊢ ( 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ↔ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) |
| 26 |
25
|
anbi2i |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) ) |
| 27 |
|
an13 |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) ↔ ( 𝑦 ∈ { 𝑧 } ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ) ) |
| 28 |
|
ancom |
⊢ ( ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) |
| 29 |
28
|
anbi2i |
⊢ ( ( 𝑦 ∈ { 𝑧 } ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑦 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 30 |
27 29
|
bitri |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) ↔ ( 𝑦 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 31 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) |
| 32 |
|
equcom |
⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) |
| 33 |
31 32
|
bitri |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑧 = 𝑦 ) |
| 34 |
33
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ↔ ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 35 |
26 30 34
|
3bitri |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 36 |
35
|
exbii |
⊢ ( ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ∃ 𝑧 ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 37 |
|
sbequ12r |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 38 |
13
|
equcoms |
⊢ ( 𝑧 = 𝑦 → 𝐴 = ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) |
| 39 |
38
|
eqcomd |
⊢ ( 𝑧 = 𝑦 → ⦋ 𝑧 / 𝑦 ⦌ 𝐴 = 𝐴 ) |
| 40 |
39
|
eleq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
| 41 |
37 40
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 42 |
41
|
equsexvw |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |
| 43 |
36 42
|
bitri |
⊢ ( ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |
| 44 |
2 24 43
|
3bitri |
⊢ ( 〈 𝐶 , 𝑦 〉 ∈ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |